diff options
| author | jeanne <jeanne@localhost.localdomain> | 2022-05-11 09:54:38 -0700 |
|---|---|---|
| committer | jeanne <jeanne@localhost.localdomain> | 2022-05-11 09:54:38 -0700 |
| commit | 411f66a2540fa17c736116d865e0ceb0cfe5623b (patch) | |
| tree | fa92c69ec627642c8452f928798ff6eccd24ddd6 /src/lib/test | |
| parent | 7705b07456dfd4b89c272613e98eda36cc787254 (diff) | |
Initial commit.
Diffstat (limited to 'src/lib/test')
| -rw-r--r-- | src/lib/test/matrix_test.c | 350 | ||||
| -rw-r--r-- | src/lib/test/neuralnet_test.c | 92 | ||||
| -rw-r--r-- | src/lib/test/test.h | 185 | ||||
| -rw-r--r-- | src/lib/test/test_main.c | 3 | ||||
| -rw-r--r-- | src/lib/test/test_util.h | 22 | ||||
| -rw-r--r-- | src/lib/test/train_linear_perceptron_non_origin_test.c | 67 | ||||
| -rw-r--r-- | src/lib/test/train_linear_perceptron_test.c | 62 | ||||
| -rw-r--r-- | src/lib/test/train_sigmoid_test.c | 66 | ||||
| -rw-r--r-- | src/lib/test/train_xor_test.c | 66 |
9 files changed, 913 insertions, 0 deletions
diff --git a/src/lib/test/matrix_test.c b/src/lib/test/matrix_test.c new file mode 100644 index 0000000..8191c97 --- /dev/null +++ b/src/lib/test/matrix_test.c | |||
| @@ -0,0 +1,350 @@ | |||
| 1 | #include <neuralnet/matrix.h> | ||
| 2 | |||
| 3 | #include "test.h" | ||
| 4 | #include "test_util.h" | ||
| 5 | |||
| 6 | #include <assert.h> | ||
| 7 | #include <stdlib.h> | ||
| 8 | |||
| 9 | // static void PrintMatrix(const nnMatrix* matrix) { | ||
| 10 | // assert(matrix); | ||
| 11 | |||
| 12 | // for (int i = 0; i < matrix->rows; ++i) { | ||
| 13 | // for (int j = 0; j < matrix->cols; ++j) { | ||
| 14 | // printf("%f ", nnMatrixAt(matrix, i, j)); | ||
| 15 | // } | ||
| 16 | // printf("\n"); | ||
| 17 | // } | ||
| 18 | // } | ||
| 19 | |||
| 20 | TEST_CASE(nnMatrixMake_1x1) { | ||
| 21 | nnMatrix A = nnMatrixMake(1, 1); | ||
| 22 | TEST_EQUAL(A.rows, 1); | ||
| 23 | TEST_EQUAL(A.cols, 1); | ||
| 24 | } | ||
| 25 | |||
| 26 | TEST_CASE(nnMatrixMake_3x1) { | ||
| 27 | nnMatrix A = nnMatrixMake(3, 1); | ||
| 28 | TEST_EQUAL(A.rows, 3); | ||
| 29 | TEST_EQUAL(A.cols, 1); | ||
| 30 | } | ||
| 31 | |||
| 32 | TEST_CASE(nnMatrixInit_3x1) { | ||
| 33 | nnMatrix A = nnMatrixMake(3, 1); | ||
| 34 | nnMatrixInit(&A, (R[]) { 1, 2, 3 }); | ||
| 35 | TEST_EQUAL(A.values[0], 1); | ||
| 36 | TEST_EQUAL(A.values[1], 2); | ||
| 37 | TEST_EQUAL(A.values[2], 3); | ||
| 38 | } | ||
| 39 | |||
| 40 | TEST_CASE(nnMatrixCopyCol_test) { | ||
| 41 | nnMatrix A = nnMatrixMake(3, 2); | ||
| 42 | nnMatrix B = nnMatrixMake(3, 1); | ||
| 43 | |||
| 44 | nnMatrixInit(&A, (R[]) { | ||
| 45 | 1, 2, | ||
| 46 | 3, 4, | ||
| 47 | 5, 6, | ||
| 48 | }); | ||
| 49 | |||
| 50 | nnMatrixCopyCol(&A, &B, 1, 0); | ||
| 51 | |||
| 52 | TEST_EQUAL(nnMatrixAt(&B, 0, 0), 2); | ||
| 53 | TEST_EQUAL(nnMatrixAt(&B, 1, 0), 4); | ||
| 54 | TEST_EQUAL(nnMatrixAt(&B, 2, 0), 6); | ||
| 55 | |||
| 56 | nnMatrixDel(&A); | ||
| 57 | nnMatrixDel(&B); | ||
| 58 | } | ||
| 59 | |||
| 60 | TEST_CASE(nnMatrixMul_square_3x3) { | ||
| 61 | nnMatrix A = nnMatrixMake(3, 3); | ||
| 62 | nnMatrix B = nnMatrixMake(3, 3); | ||
| 63 | nnMatrix O = nnMatrixMake(3, 3); | ||
| 64 | |||
| 65 | nnMatrixInit(&A, (const R[]){ | ||
| 66 | 1, 2, 3, | ||
| 67 | 4, 5, 6, | ||
| 68 | 7, 8, 9, | ||
| 69 | }); | ||
| 70 | nnMatrixInit(&B, (const R[]){ | ||
| 71 | 2, 4, 3, | ||
| 72 | 6, 8, 5, | ||
| 73 | 1, 7, 9, | ||
| 74 | }); | ||
| 75 | nnMatrixMul(&A, &B, &O); | ||
| 76 | |||
| 77 | const R expected[3][3] = { | ||
| 78 | { 17, 41, 40 }, | ||
| 79 | { 44, 98, 91 }, | ||
| 80 | { 71, 155, 142 }, | ||
| 81 | }; | ||
| 82 | for (int i = 0; i < O.rows; ++i) { | ||
| 83 | for (int j = 0; j < O.cols; ++j) { | ||
| 84 | TEST_TRUE(double_eq(nnMatrixAt(&O, i, j), expected[i][j], EPS)); | ||
| 85 | } | ||
| 86 | } | ||
| 87 | |||
| 88 | nnMatrixDel(&A); | ||
| 89 | nnMatrixDel(&B); | ||
| 90 | nnMatrixDel(&O); | ||
| 91 | } | ||
| 92 | |||
| 93 | TEST_CASE(nnMatrixMul_non_square_2x3_3x1) { | ||
| 94 | nnMatrix A = nnMatrixMake(2, 3); | ||
| 95 | nnMatrix B = nnMatrixMake(3, 1); | ||
| 96 | nnMatrix O = nnMatrixMake(2, 1); | ||
| 97 | |||
| 98 | nnMatrixInit(&A, (const R[]){ | ||
| 99 | 1, 2, 3, | ||
| 100 | 4, 5, 6, | ||
| 101 | }); | ||
| 102 | nnMatrixInit(&B, (const R[]){ | ||
| 103 | 2, | ||
| 104 | 6, | ||
| 105 | 1, | ||
| 106 | }); | ||
| 107 | nnMatrixMul(&A, &B, &O); | ||
| 108 | |||
| 109 | const R expected[2][1] = { | ||
| 110 | { 17 }, | ||
| 111 | { 44 }, | ||
| 112 | }; | ||
| 113 | for (int i = 0; i < O.rows; ++i) { | ||
| 114 | for (int j = 0; j < O.cols; ++j) { | ||
| 115 | TEST_TRUE(double_eq(nnMatrixAt(&O, i, j), expected[i][j], EPS)); | ||
| 116 | } | ||
| 117 | } | ||
| 118 | |||
| 119 | nnMatrixDel(&A); | ||
| 120 | nnMatrixDel(&B); | ||
| 121 | nnMatrixDel(&O); | ||
| 122 | } | ||
| 123 | |||
| 124 | TEST_CASE(nnMatrixMulAdd_test) { | ||
| 125 | nnMatrix A = nnMatrixMake(2, 3); | ||
| 126 | nnMatrix B = nnMatrixMake(2, 3); | ||
| 127 | nnMatrix O = nnMatrixMake(2, 3); | ||
| 128 | const R scale = 2; | ||
| 129 | |||
| 130 | nnMatrixInit(&A, (const R[]){ | ||
| 131 | 1, 2, 3, | ||
| 132 | 4, 5, 6, | ||
| 133 | }); | ||
| 134 | nnMatrixInit(&B, (const R[]){ | ||
| 135 | 2, 3, 1, | ||
| 136 | 7, 4, 3 | ||
| 137 | }); | ||
| 138 | nnMatrixMulAdd(&A, &B, scale, &O); // O = A + B * scale | ||
| 139 | |||
| 140 | const R expected[2][3] = { | ||
| 141 | { 5, 8, 5 }, | ||
| 142 | { 18, 13, 12 }, | ||
| 143 | }; | ||
| 144 | for (int i = 0; i < O.rows; ++i) { | ||
| 145 | for (int j = 0; j < O.cols; ++j) { | ||
| 146 | TEST_TRUE(double_eq(nnMatrixAt(&O, i, j), expected[i][j], EPS)); | ||
| 147 | } | ||
| 148 | } | ||
| 149 | |||
| 150 | nnMatrixDel(&A); | ||
| 151 | nnMatrixDel(&B); | ||
| 152 | nnMatrixDel(&O); | ||
| 153 | } | ||
| 154 | |||
| 155 | TEST_CASE(nnMatrixMulSub_test) { | ||
| 156 | nnMatrix A = nnMatrixMake(2, 3); | ||
| 157 | nnMatrix B = nnMatrixMake(2, 3); | ||
| 158 | nnMatrix O = nnMatrixMake(2, 3); | ||
| 159 | const R scale = 2; | ||
| 160 | |||
| 161 | nnMatrixInit(&A, (const R[]){ | ||
| 162 | 1, 2, 3, | ||
| 163 | 4, 5, 6, | ||
| 164 | }); | ||
| 165 | nnMatrixInit(&B, (const R[]){ | ||
| 166 | 2, 3, 1, | ||
| 167 | 7, 4, 3 | ||
| 168 | }); | ||
| 169 | nnMatrixMulSub(&A, &B, scale, &O); // O = A - B * scale | ||
| 170 | |||
| 171 | const R expected[2][3] = { | ||
| 172 | { -3, -4, 1 }, | ||
| 173 | { -10, -3, 0 }, | ||
| 174 | }; | ||
| 175 | for (int i = 0; i < O.rows; ++i) { | ||
| 176 | for (int j = 0; j < O.cols; ++j) { | ||
| 177 | TEST_TRUE(double_eq(nnMatrixAt(&O, i, j), expected[i][j], EPS)); | ||
| 178 | } | ||
| 179 | } | ||
| 180 | |||
| 181 | nnMatrixDel(&A); | ||
| 182 | nnMatrixDel(&B); | ||
| 183 | nnMatrixDel(&O); | ||
| 184 | } | ||
| 185 | |||
| 186 | TEST_CASE(nnMatrixMulPairs_2x3) { | ||
| 187 | nnMatrix A = nnMatrixMake(2, 3); | ||
| 188 | nnMatrix B = nnMatrixMake(2, 3); | ||
| 189 | nnMatrix O = nnMatrixMake(2, 3); | ||
| 190 | |||
| 191 | nnMatrixInit(&A, (const R[]){ | ||
| 192 | 1, 2, 3, | ||
| 193 | 4, 5, 6, | ||
| 194 | }); | ||
| 195 | nnMatrixInit(&B, (const R[]){ | ||
| 196 | 2, 3, 1, | ||
| 197 | 7, 4, 3 | ||
| 198 | }); | ||
| 199 | nnMatrixMulPairs(&A, &B, &O); | ||
| 200 | |||
| 201 | const R expected[2][3] = { | ||
| 202 | { 2, 6, 3 }, | ||
| 203 | { 28, 20, 18 }, | ||
| 204 | }; | ||
| 205 | for (int i = 0; i < O.rows; ++i) { | ||
| 206 | for (int j = 0; j < O.cols; ++j) { | ||
| 207 | TEST_TRUE(double_eq(nnMatrixAt(&O, i, j), expected[i][j], EPS)); | ||
| 208 | } | ||
| 209 | } | ||
| 210 | |||
| 211 | nnMatrixDel(&A); | ||
| 212 | nnMatrixDel(&B); | ||
| 213 | nnMatrixDel(&O); | ||
| 214 | } | ||
| 215 | |||
| 216 | TEST_CASE(nnMatrixAdd_square_2x2) { | ||
| 217 | nnMatrix A = nnMatrixMake(2, 2); | ||
| 218 | nnMatrix B = nnMatrixMake(2, 2); | ||
| 219 | nnMatrix C = nnMatrixMake(2, 2); | ||
| 220 | |||
| 221 | nnMatrixInit(&A, (R[]) { | ||
| 222 | 1, 2, | ||
| 223 | 3, 4, | ||
| 224 | }); | ||
| 225 | nnMatrixInit(&B, (R[]) { | ||
| 226 | 2, 1, | ||
| 227 | 5, 3, | ||
| 228 | }); | ||
| 229 | |||
| 230 | nnMatrixAdd(&A, &B, &C); | ||
| 231 | |||
| 232 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 0), 3, EPS)); | ||
| 233 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 1), 3, EPS)); | ||
| 234 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 0), 8, EPS)); | ||
| 235 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 1), 7, EPS)); | ||
| 236 | |||
| 237 | nnMatrixDel(&A); | ||
| 238 | nnMatrixDel(&B); | ||
| 239 | nnMatrixDel(&C); | ||
| 240 | } | ||
| 241 | |||
| 242 | TEST_CASE(nnMatrixSub_square_2x2) { | ||
| 243 | nnMatrix A = nnMatrixMake(2, 2); | ||
| 244 | nnMatrix B = nnMatrixMake(2, 2); | ||
| 245 | nnMatrix C = nnMatrixMake(2, 2); | ||
| 246 | |||
| 247 | nnMatrixInit(&A, (R[]) { | ||
| 248 | 1, 2, | ||
| 249 | 3, 4, | ||
| 250 | }); | ||
| 251 | nnMatrixInit(&B, (R[]) { | ||
| 252 | 2, 1, | ||
| 253 | 5, 3, | ||
| 254 | }); | ||
| 255 | |||
| 256 | nnMatrixSub(&A, &B, &C); | ||
| 257 | |||
| 258 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 0), -1, EPS)); | ||
| 259 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 1), +1, EPS)); | ||
| 260 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 0), -2, EPS)); | ||
| 261 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 1), +1, EPS)); | ||
| 262 | |||
| 263 | nnMatrixDel(&A); | ||
| 264 | nnMatrixDel(&B); | ||
| 265 | nnMatrixDel(&C); | ||
| 266 | } | ||
| 267 | |||
| 268 | TEST_CASE(nnMatrixAddRow_test) { | ||
| 269 | nnMatrix A = nnMatrixMake(2, 3); | ||
| 270 | nnMatrix B = nnMatrixMake(1, 3); | ||
| 271 | nnMatrix C = nnMatrixMake(2, 3); | ||
| 272 | |||
| 273 | nnMatrixInit(&A, (R[]) { | ||
| 274 | 1, 2, 3, | ||
| 275 | 4, 5, 6, | ||
| 276 | }); | ||
| 277 | nnMatrixInit(&B, (R[]) { | ||
| 278 | 2, 1, 3, | ||
| 279 | }); | ||
| 280 | |||
| 281 | nnMatrixAddRow(&A, &B, &C); | ||
| 282 | |||
| 283 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 0), 3, EPS)); | ||
| 284 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 1), 3, EPS)); | ||
| 285 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 2), 6, EPS)); | ||
| 286 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 0), 6, EPS)); | ||
| 287 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 1), 6, EPS)); | ||
| 288 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 2), 9, EPS)); | ||
| 289 | |||
| 290 | nnMatrixDel(&A); | ||
| 291 | nnMatrixDel(&B); | ||
| 292 | nnMatrixDel(&C); | ||
| 293 | } | ||
| 294 | |||
| 295 | TEST_CASE(nnMatrixTranspose_square_2x2) { | ||
| 296 | nnMatrix A = nnMatrixMake(2, 2); | ||
| 297 | nnMatrix B = nnMatrixMake(2, 2); | ||
| 298 | |||
| 299 | nnMatrixInit(&A, (R[]) { | ||
| 300 | 1, 2, | ||
| 301 | 3, 4 | ||
| 302 | }); | ||
| 303 | |||
| 304 | nnMatrixTranspose(&A, &B); | ||
| 305 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 0), 1, EPS)); | ||
| 306 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 1), 3, EPS)); | ||
| 307 | TEST_TRUE(double_eq(nnMatrixAt(&B, 1, 0), 2, EPS)); | ||
| 308 | TEST_TRUE(double_eq(nnMatrixAt(&B, 1, 1), 4, EPS)); | ||
| 309 | |||
| 310 | nnMatrixDel(&A); | ||
| 311 | nnMatrixDel(&B); | ||
| 312 | } | ||
| 313 | |||
| 314 | TEST_CASE(nnMatrixTranspose_non_square_2x1) { | ||
| 315 | nnMatrix A = nnMatrixMake(2, 1); | ||
| 316 | nnMatrix B = nnMatrixMake(1, 2); | ||
| 317 | |||
| 318 | nnMatrixInit(&A, (R[]) { | ||
| 319 | 1, | ||
| 320 | 3, | ||
| 321 | }); | ||
| 322 | |||
| 323 | nnMatrixTranspose(&A, &B); | ||
| 324 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 0), 1, EPS)); | ||
| 325 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 1), 3, EPS)); | ||
| 326 | |||
| 327 | nnMatrixDel(&A); | ||
| 328 | nnMatrixDel(&B); | ||
| 329 | } | ||
| 330 | |||
| 331 | TEST_CASE(nnMatrixGt_test) { | ||
| 332 | nnMatrix A = nnMatrixMake(2, 3); | ||
| 333 | nnMatrix B = nnMatrixMake(2, 3); | ||
| 334 | |||
| 335 | nnMatrixInit(&A, (R[]) { | ||
| 336 | -3, 2, 0, | ||
| 337 | 4, -1, 5 | ||
| 338 | }); | ||
| 339 | |||
| 340 | nnMatrixGt(&A, 0, &B); | ||
| 341 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 0), 0, EPS)); | ||
| 342 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 1), 1, EPS)); | ||
| 343 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 2), 0, EPS)); | ||
| 344 | TEST_TRUE(double_eq(nnMatrixAt(&B, 1, 0), 1, EPS)); | ||
| 345 | TEST_TRUE(double_eq(nnMatrixAt(&B, 1, 1), 0, EPS)); | ||
| 346 | TEST_TRUE(double_eq(nnMatrixAt(&B, 1, 2), 1, EPS)); | ||
| 347 | |||
| 348 | nnMatrixDel(&A); | ||
| 349 | nnMatrixDel(&B); | ||
| 350 | } | ||
diff --git a/src/lib/test/neuralnet_test.c b/src/lib/test/neuralnet_test.c new file mode 100644 index 0000000..14d9438 --- /dev/null +++ b/src/lib/test/neuralnet_test.c | |||
| @@ -0,0 +1,92 @@ | |||
| 1 | #include <neuralnet/neuralnet.h> | ||
| 2 | |||
| 3 | #include <neuralnet/matrix.h> | ||
| 4 | #include "activation.h" | ||
| 5 | #include "neuralnet_impl.h" | ||
| 6 | |||
| 7 | #include "test.h" | ||
| 8 | #include "test_util.h" | ||
| 9 | |||
| 10 | #include <assert.h> | ||
| 11 | |||
| 12 | TEST_CASE(neuralnet_perceptron_test) { | ||
| 13 | const int num_layers = 1; | ||
| 14 | const int layer_sizes[] = { 1, 1 }; | ||
| 15 | const nnActivation layer_activations[] = { nnSigmoid }; | ||
| 16 | const R weights[] = { 0.3 }; | ||
| 17 | |||
| 18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | ||
| 19 | assert(net); | ||
| 20 | nnSetWeights(net, weights); | ||
| 21 | |||
| 22 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | ||
| 23 | |||
| 24 | const R input[] = { 0.9 }; | ||
| 25 | R output[1]; | ||
| 26 | nnQueryArray(net, query, input, output); | ||
| 27 | |||
| 28 | const R expected_output = sigmoid(input[0] * weights[0]); | ||
| 29 | printf("\nOutput: %f, Expected: %f\n", output[0], expected_output); | ||
| 30 | TEST_TRUE(double_eq(output[0], expected_output, EPS)); | ||
| 31 | |||
| 32 | nnDeleteQueryObject(&query); | ||
| 33 | nnDeleteNet(&net); | ||
| 34 | } | ||
| 35 | |||
| 36 | TEST_CASE(neuralnet_xor_test) { | ||
| 37 | const int num_layers = 2; | ||
| 38 | const int layer_sizes[] = { 2, 2, 1 }; | ||
| 39 | const nnActivation layer_activations[] = { nnRelu, nnIdentity }; | ||
| 40 | const R weights[] = { | ||
| 41 | 1, 1, 1, 1, // First (hidden) layer. | ||
| 42 | 1, -2 // Second (output) layer. | ||
| 43 | }; | ||
| 44 | const R biases[] = { | ||
| 45 | 0, -1, // First (hidden) layer. | ||
| 46 | 0 // Second (output) layer. | ||
| 47 | }; | ||
| 48 | |||
| 49 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | ||
| 50 | assert(net); | ||
| 51 | nnSetWeights(net, weights); | ||
| 52 | nnSetBiases(net, biases); | ||
| 53 | |||
| 54 | // First layer weights. | ||
| 55 | TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 0), 1); | ||
| 56 | TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 1), 1); | ||
| 57 | TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 2), 1); | ||
| 58 | TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 3), 1); | ||
| 59 | // Second layer weights. | ||
| 60 | TEST_EQUAL(nnMatrixAt(&net->weights[1], 0, 0), 1); | ||
| 61 | TEST_EQUAL(nnMatrixAt(&net->weights[1], 0, 1), -2); | ||
| 62 | // First layer biases. | ||
| 63 | TEST_EQUAL(nnMatrixAt(&net->biases[0], 0, 0), 0); | ||
| 64 | TEST_EQUAL(nnMatrixAt(&net->biases[0], 0, 1), -1); | ||
| 65 | // Second layer biases. | ||
| 66 | TEST_EQUAL(nnMatrixAt(&net->biases[1], 0, 0), 0); | ||
| 67 | |||
| 68 | // Test. | ||
| 69 | |||
| 70 | #define M 4 | ||
| 71 | |||
| 72 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/M); | ||
| 73 | |||
| 74 | const R test_inputs[M][2] = { { 0., 0. }, { 1., 0. }, { 0., 1. }, { 1., 1. } }; | ||
| 75 | nnMatrix test_inputs_matrix = nnMatrixMake(M, 2); | ||
| 76 | nnMatrixInit(&test_inputs_matrix, (const R*)test_inputs); | ||
| 77 | nnQuery(net, query, &test_inputs_matrix); | ||
| 78 | |||
| 79 | const R expected_outputs[M] = { 0., 1., 1., 0. }; | ||
| 80 | for (int i = 0; i < M; ++i) { | ||
| 81 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | ||
| 82 | printf("\nInput: (%f, %f), Output: %f, Expected: %f\n", | ||
| 83 | test_inputs[i][0], test_inputs[i][1], test_output, expected_outputs[i]); | ||
| 84 | } | ||
| 85 | for (int i = 0; i < M; ++i) { | ||
| 86 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | ||
| 87 | TEST_TRUE(double_eq(test_output, expected_outputs[i], OUTPUT_EPS)); | ||
| 88 | } | ||
| 89 | |||
| 90 | nnDeleteQueryObject(&query); | ||
| 91 | nnDeleteNet(&net); | ||
| 92 | } | ||
diff --git a/src/lib/test/test.h b/src/lib/test/test.h new file mode 100644 index 0000000..fd8dc22 --- /dev/null +++ b/src/lib/test/test.h | |||
| @@ -0,0 +1,185 @@ | |||
| 1 | // SPDX-License-Identifier: MIT | ||
| 2 | #pragma once | ||
| 3 | |||
| 4 | #ifdef UNIT_TEST | ||
| 5 | |||
| 6 | #include <stdbool.h> | ||
| 7 | #include <stdio.h> | ||
| 8 | #include <stdlib.h> | ||
| 9 | #include <string.h> | ||
| 10 | |||
| 11 | #if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || \ | ||
| 12 | defined(__NetBSD__) || defined(__OpenBSD__) | ||
| 13 | #define USE_SYSCTL_FOR_ARGS 1 | ||
| 14 | // clang-format off | ||
| 15 | #include <sys/types.h> | ||
| 16 | #include <sys/sysctl.h> | ||
| 17 | // clang-format on | ||
| 18 | #include <unistd.h> // getpid | ||
| 19 | #endif | ||
| 20 | |||
| 21 | struct test_file_metadata; | ||
| 22 | |||
| 23 | struct test_failure { | ||
| 24 | bool present; | ||
| 25 | const char *message; | ||
| 26 | const char *file; | ||
| 27 | int line; | ||
| 28 | }; | ||
| 29 | |||
| 30 | struct test_case_metadata { | ||
| 31 | void (*fn)(struct test_case_metadata *, struct test_file_metadata *); | ||
| 32 | struct test_failure failure; | ||
| 33 | const char *name; | ||
| 34 | struct test_case_metadata *next; | ||
| 35 | }; | ||
| 36 | |||
| 37 | struct test_file_metadata { | ||
| 38 | bool registered; | ||
| 39 | const char *name; | ||
| 40 | struct test_file_metadata *next; | ||
| 41 | struct test_case_metadata *tests; | ||
| 42 | }; | ||
| 43 | |||
| 44 | struct test_file_metadata __attribute__((weak)) * test_file_head; | ||
| 45 | |||
| 46 | #define SET_FAILURE(_message) \ | ||
| 47 | metadata->failure = (struct test_failure) { \ | ||
| 48 | .message = _message, .file = __FILE__, .line = __LINE__, .present = true, \ | ||
| 49 | } | ||
| 50 | |||
| 51 | #define TEST_EQUAL(a, b) \ | ||
| 52 | do { \ | ||
| 53 | if ((a) != (b)) { \ | ||
| 54 | SET_FAILURE(#a " != " #b); \ | ||
| 55 | return; \ | ||
| 56 | } \ | ||
| 57 | } while (0) | ||
| 58 | |||
| 59 | #define TEST_TRUE(a) \ | ||
| 60 | do { \ | ||
| 61 | if (!(a)) { \ | ||
| 62 | SET_FAILURE(#a " is not true"); \ | ||
| 63 | return; \ | ||
| 64 | } \ | ||
| 65 | } while (0) | ||
| 66 | |||
| 67 | #define TEST_STREQUAL(a, b) \ | ||
| 68 | do { \ | ||
| 69 | if (strcmp(a, b) != 0) { \ | ||
| 70 | SET_FAILURE(#a " != " #b); \ | ||
| 71 | return; \ | ||
| 72 | } \ | ||
| 73 | } while (0) | ||
| 74 | |||
| 75 | #define TEST_CASE(_name) \ | ||
| 76 | static void __test_h_##_name(struct test_case_metadata *, \ | ||
| 77 | struct test_file_metadata *); \ | ||
| 78 | static struct test_file_metadata __test_h_file; \ | ||
| 79 | static struct test_case_metadata __test_h_meta_##_name = { \ | ||
| 80 | .name = #_name, \ | ||
| 81 | .fn = __test_h_##_name, \ | ||
| 82 | }; \ | ||
| 83 | static void __attribute__((constructor(101))) __test_h_##_name##_register(void) { \ | ||
| 84 | __test_h_meta_##_name.next = __test_h_file.tests; \ | ||
| 85 | __test_h_file.tests = &__test_h_meta_##_name; \ | ||
| 86 | if (!__test_h_file.registered) { \ | ||
| 87 | __test_h_file.name = __FILE__; \ | ||
| 88 | __test_h_file.next = test_file_head; \ | ||
| 89 | test_file_head = &__test_h_file; \ | ||
| 90 | __test_h_file.registered = true; \ | ||
| 91 | } \ | ||
| 92 | } \ | ||
| 93 | static void __test_h_##_name( \ | ||
| 94 | struct test_case_metadata *metadata __attribute__((unused)), \ | ||
| 95 | struct test_file_metadata *file_metadata __attribute__((unused))) | ||
| 96 | |||
| 97 | extern void __attribute__((weak)) (*test_h_unittest_setup)(void); | ||
| 98 | /// Run defined tests, return true if all tests succeeds | ||
| 99 | /// @param[out] tests_run if not NULL, set to whether tests were run | ||
| 100 | static inline void __attribute__((constructor(102))) run_tests(void) { | ||
| 101 | bool should_run = false; | ||
| 102 | #ifdef USE_SYSCTL_FOR_ARGS | ||
| 103 | int mib[] = { | ||
| 104 | CTL_KERN, | ||
| 105 | #if defined(__NetBSD__) || defined(__OpenBSD__) | ||
| 106 | KERN_PROC_ARGS, | ||
| 107 | getpid(), | ||
| 108 | KERN_PROC_ARGV, | ||
| 109 | #else | ||
| 110 | KERN_PROC, | ||
| 111 | KERN_PROC_ARGS, | ||
| 112 | getpid(), | ||
| 113 | #endif | ||
| 114 | }; | ||
| 115 | char *arg = NULL; | ||
| 116 | size_t arglen; | ||
| 117 | sysctl(mib, sizeof(mib) / sizeof(mib[0]), NULL, &arglen, NULL, 0); | ||
| 118 | arg = malloc(arglen); | ||
| 119 | sysctl(mib, sizeof(mib) / sizeof(mib[0]), arg, &arglen, NULL, 0); | ||
| 120 | #else | ||
| 121 | FILE *cmdlinef = fopen("/proc/self/cmdline", "r"); | ||
| 122 | char *arg = NULL; | ||
| 123 | int arglen; | ||
| 124 | fscanf(cmdlinef, "%ms%n", &arg, &arglen); | ||
| 125 | fclose(cmdlinef); | ||
| 126 | #endif | ||
| 127 | for (char *pos = arg; pos < arg + arglen; pos += strlen(pos) + 1) { | ||
| 128 | if (strcmp(pos, "--unittest") == 0) { | ||
| 129 | should_run = true; | ||
| 130 | break; | ||
| 131 | } | ||
| 132 | } | ||
| 133 | free(arg); | ||
| 134 | |||
| 135 | if (!should_run) { | ||
| 136 | return; | ||
| 137 | } | ||
| 138 | |||
| 139 | if (&test_h_unittest_setup) { | ||
| 140 | test_h_unittest_setup(); | ||
| 141 | } | ||
| 142 | |||
| 143 | struct test_file_metadata *i = test_file_head; | ||
| 144 | int failed = 0, success = 0; | ||
| 145 | while (i) { | ||
| 146 | fprintf(stderr, "Running tests from %s:\n", i->name); | ||
| 147 | struct test_case_metadata *j = i->tests; | ||
| 148 | while (j) { | ||
| 149 | fprintf(stderr, "\t%s ... ", j->name); | ||
| 150 | j->failure.present = false; | ||
| 151 | j->fn(j, i); | ||
| 152 | if (j->failure.present) { | ||
| 153 | fprintf(stderr, "failed (%s at %s:%d)\n", j->failure.message, | ||
| 154 | j->failure.file, j->failure.line); | ||
| 155 | failed++; | ||
| 156 | } else { | ||
| 157 | fprintf(stderr, "passed\n"); | ||
| 158 | success++; | ||
| 159 | } | ||
| 160 | j = j->next; | ||
| 161 | } | ||
| 162 | fprintf(stderr, "\n"); | ||
| 163 | i = i->next; | ||
| 164 | } | ||
| 165 | int total = failed + success; | ||
| 166 | fprintf(stderr, "Test results: passed %d/%d, failed %d/%d\n", success, total, | ||
| 167 | failed, total); | ||
| 168 | exit(failed == 0 ? EXIT_SUCCESS : EXIT_FAILURE); | ||
| 169 | } | ||
| 170 | |||
| 171 | #else | ||
| 172 | |||
| 173 | #include <stdbool.h> | ||
| 174 | |||
| 175 | #define TEST_CASE(name) static void __attribute__((unused)) __test_h_##name(void) | ||
| 176 | |||
| 177 | #define TEST_EQUAL(a, b) \ | ||
| 178 | (void)(a); \ | ||
| 179 | (void)(b) | ||
| 180 | #define TEST_TRUE(a) (void)(a) | ||
| 181 | #define TEST_STREQUAL(a, b) \ | ||
| 182 | (void)(a); \ | ||
| 183 | (void)(b) | ||
| 184 | |||
| 185 | #endif | ||
diff --git a/src/lib/test/test_main.c b/src/lib/test/test_main.c new file mode 100644 index 0000000..4cce7f6 --- /dev/null +++ b/src/lib/test/test_main.c | |||
| @@ -0,0 +1,3 @@ | |||
| 1 | int main() { | ||
| 2 | return 0; | ||
| 3 | } | ||
diff --git a/src/lib/test/test_util.h b/src/lib/test/test_util.h new file mode 100644 index 0000000..8abb99a --- /dev/null +++ b/src/lib/test/test_util.h | |||
| @@ -0,0 +1,22 @@ | |||
| 1 | #pragma once | ||
| 2 | |||
| 3 | #include <neuralnet/types.h> | ||
| 4 | |||
| 5 | #include <math.h> | ||
| 6 | |||
| 7 | // General epsilon for comparing values. | ||
| 8 | static const R EPS = 1e-10; | ||
| 9 | |||
| 10 | // Epsilon for comparing network weights after training. | ||
| 11 | static const R WEIGHT_EPS = 0.01; | ||
| 12 | |||
| 13 | // Epsilon for comparing network outputs after training. | ||
| 14 | static const R OUTPUT_EPS = 0.01; | ||
| 15 | |||
| 16 | static inline bool double_eq(double a, double b, double eps) { | ||
| 17 | return fabs(a - b) <= eps; | ||
| 18 | } | ||
| 19 | |||
| 20 | static inline R lerp(R a, R b, R t) { | ||
| 21 | return a + t*(b-a); | ||
| 22 | } | ||
diff --git a/src/lib/test/train_linear_perceptron_non_origin_test.c b/src/lib/test/train_linear_perceptron_non_origin_test.c new file mode 100644 index 0000000..5a320ac --- /dev/null +++ b/src/lib/test/train_linear_perceptron_non_origin_test.c | |||
| @@ -0,0 +1,67 @@ | |||
| 1 | #include <neuralnet/train.h> | ||
| 2 | |||
| 3 | #include <neuralnet/matrix.h> | ||
| 4 | #include <neuralnet/neuralnet.h> | ||
| 5 | #include "activation.h" | ||
| 6 | #include "neuralnet_impl.h" | ||
| 7 | |||
| 8 | #include "test.h" | ||
| 9 | #include "test_util.h" | ||
| 10 | |||
| 11 | #include <assert.h> | ||
| 12 | |||
| 13 | TEST_CASE(neuralnet_train_linear_perceptron_non_origin_test) { | ||
| 14 | const int num_layers = 1; | ||
| 15 | const int layer_sizes[] = { 1, 1 }; | ||
| 16 | const nnActivation layer_activations[] = { nnIdentity }; | ||
| 17 | |||
| 18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | ||
| 19 | assert(net); | ||
| 20 | |||
| 21 | // Train. | ||
| 22 | |||
| 23 | // Try to learn the Y = 2X + 1 line. | ||
| 24 | #define N 2 | ||
| 25 | const R inputs[N] = { 0., 1. }; | ||
| 26 | const R targets[N] = { 1., 3. }; | ||
| 27 | |||
| 28 | nnMatrix inputs_matrix = nnMatrixMake(N, 1); | ||
| 29 | nnMatrix targets_matrix = nnMatrixMake(N, 1); | ||
| 30 | nnMatrixInit(&inputs_matrix, inputs); | ||
| 31 | nnMatrixInit(&targets_matrix, targets); | ||
| 32 | |||
| 33 | nnTrainingParams params = { | ||
| 34 | .learning_rate = 0.7, | ||
| 35 | .max_iterations = 20, | ||
| 36 | .seed = 0, | ||
| 37 | .weight_init = nnWeightInit01, | ||
| 38 | .debug = false, | ||
| 39 | }; | ||
| 40 | |||
| 41 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | ||
| 42 | |||
| 43 | const R weight = nnMatrixAt(&net->weights[0], 0, 0); | ||
| 44 | const R expected_weight = 2.0; | ||
| 45 | printf("\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | ||
| 46 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); | ||
| 47 | |||
| 48 | const R bias = nnMatrixAt(&net->biases[0], 0, 0); | ||
| 49 | const R expected_bias = 1.0; | ||
| 50 | printf("Trained network bias: %f, Expected: %f\n", bias, expected_bias); | ||
| 51 | TEST_TRUE(double_eq(bias, expected_bias, WEIGHT_EPS)); | ||
| 52 | |||
| 53 | // Test. | ||
| 54 | |||
| 55 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | ||
| 56 | |||
| 57 | const R test_input[] = { 2.3 }; | ||
| 58 | R test_output[1]; | ||
| 59 | nnQueryArray(net, query, test_input, test_output); | ||
| 60 | |||
| 61 | const R expected_output = test_input[0] * expected_weight + expected_bias; | ||
| 62 | printf("Output: %f, Expected: %f\n", test_output[0], expected_output); | ||
| 63 | TEST_TRUE(double_eq(test_output[0], expected_output, OUTPUT_EPS)); | ||
| 64 | |||
| 65 | nnDeleteQueryObject(&query); | ||
| 66 | nnDeleteNet(&net); | ||
| 67 | } | ||
diff --git a/src/lib/test/train_linear_perceptron_test.c b/src/lib/test/train_linear_perceptron_test.c new file mode 100644 index 0000000..2b1336d --- /dev/null +++ b/src/lib/test/train_linear_perceptron_test.c | |||
| @@ -0,0 +1,62 @@ | |||
| 1 | #include <neuralnet/train.h> | ||
| 2 | |||
| 3 | #include <neuralnet/matrix.h> | ||
| 4 | #include <neuralnet/neuralnet.h> | ||
| 5 | #include "activation.h" | ||
| 6 | #include "neuralnet_impl.h" | ||
| 7 | |||
| 8 | #include "test.h" | ||
| 9 | #include "test_util.h" | ||
| 10 | |||
| 11 | #include <assert.h> | ||
| 12 | |||
| 13 | TEST_CASE(neuralnet_train_linear_perceptron_test) { | ||
| 14 | const int num_layers = 1; | ||
| 15 | const int layer_sizes[] = { 1, 1 }; | ||
| 16 | const nnActivation layer_activations[] = { nnIdentity }; | ||
| 17 | |||
| 18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | ||
| 19 | assert(net); | ||
| 20 | |||
| 21 | // Train. | ||
| 22 | |||
| 23 | // Try to learn the Y=X line. | ||
| 24 | #define N 2 | ||
| 25 | const R inputs[N] = { 0., 1. }; | ||
| 26 | const R targets[N] = { 0., 1. }; | ||
| 27 | |||
| 28 | nnMatrix inputs_matrix = nnMatrixMake(N, 1); | ||
| 29 | nnMatrix targets_matrix = nnMatrixMake(N, 1); | ||
| 30 | nnMatrixInit(&inputs_matrix, inputs); | ||
| 31 | nnMatrixInit(&targets_matrix, targets); | ||
| 32 | |||
| 33 | nnTrainingParams params = { | ||
| 34 | .learning_rate = 0.7, | ||
| 35 | .max_iterations = 10, | ||
| 36 | .seed = 0, | ||
| 37 | .weight_init = nnWeightInit01, | ||
| 38 | .debug = false, | ||
| 39 | }; | ||
| 40 | |||
| 41 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | ||
| 42 | |||
| 43 | const R weight = nnMatrixAt(&net->weights[0], 0, 0); | ||
| 44 | const R expected_weight = 1.0; | ||
| 45 | printf("\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | ||
| 46 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); | ||
| 47 | |||
| 48 | // Test. | ||
| 49 | |||
| 50 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | ||
| 51 | |||
| 52 | const R test_input[] = { 2.3 }; | ||
| 53 | R test_output[1]; | ||
| 54 | nnQueryArray(net, query, test_input, test_output); | ||
| 55 | |||
| 56 | const R expected_output = test_input[0]; | ||
| 57 | printf("Output: %f, Expected: %f\n", test_output[0], expected_output); | ||
| 58 | TEST_TRUE(double_eq(test_output[0], expected_output, OUTPUT_EPS)); | ||
| 59 | |||
| 60 | nnDeleteQueryObject(&query); | ||
| 61 | nnDeleteNet(&net); | ||
| 62 | } | ||
diff --git a/src/lib/test/train_sigmoid_test.c b/src/lib/test/train_sigmoid_test.c new file mode 100644 index 0000000..588e7ca --- /dev/null +++ b/src/lib/test/train_sigmoid_test.c | |||
| @@ -0,0 +1,66 @@ | |||
| 1 | #include <neuralnet/train.h> | ||
| 2 | |||
| 3 | #include <neuralnet/matrix.h> | ||
| 4 | #include <neuralnet/neuralnet.h> | ||
| 5 | #include "activation.h" | ||
| 6 | #include "neuralnet_impl.h" | ||
| 7 | |||
| 8 | #include "test.h" | ||
| 9 | #include "test_util.h" | ||
| 10 | |||
| 11 | #include <assert.h> | ||
| 12 | |||
| 13 | TEST_CASE(neuralnet_train_sigmoid_test) { | ||
| 14 | const int num_layers = 1; | ||
| 15 | const int layer_sizes[] = { 1, 1 }; | ||
| 16 | const nnActivation layer_activations[] = { nnSigmoid }; | ||
| 17 | |||
| 18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | ||
| 19 | assert(net); | ||
| 20 | |||
| 21 | // Train. | ||
| 22 | |||
| 23 | // Try to learn the sigmoid function. | ||
| 24 | #define N 3 | ||
| 25 | R inputs[N]; | ||
| 26 | R targets[N]; | ||
| 27 | for (int i = 0; i < N; ++i) { | ||
| 28 | inputs[i] = lerp(-1, +1, (R)i / (R)(N-1)); | ||
| 29 | targets[i] = sigmoid(inputs[i]); | ||
| 30 | } | ||
| 31 | |||
| 32 | nnMatrix inputs_matrix = nnMatrixMake(N, 1); | ||
| 33 | nnMatrix targets_matrix = nnMatrixMake(N, 1); | ||
| 34 | nnMatrixInit(&inputs_matrix, inputs); | ||
| 35 | nnMatrixInit(&targets_matrix, targets); | ||
| 36 | |||
| 37 | nnTrainingParams params = { | ||
| 38 | .learning_rate = 0.9, | ||
| 39 | .max_iterations = 100, | ||
| 40 | .seed = 0, | ||
| 41 | .weight_init = nnWeightInit01, | ||
| 42 | .debug = false, | ||
| 43 | }; | ||
| 44 | |||
| 45 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | ||
| 46 | |||
| 47 | const R weight = nnMatrixAt(&net->weights[0], 0, 0); | ||
| 48 | const R expected_weight = 1.0; | ||
| 49 | printf("\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | ||
| 50 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); | ||
| 51 | |||
| 52 | // Test. | ||
| 53 | |||
| 54 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | ||
| 55 | |||
| 56 | const R test_input[] = { 0.3 }; | ||
| 57 | R test_output[1]; | ||
| 58 | nnQueryArray(net, query, test_input, test_output); | ||
| 59 | |||
| 60 | const R expected_output = 0.574442516811659; // sigmoid(0.3) | ||
| 61 | printf("Output: %f, Expected: %f\n", test_output[0], expected_output); | ||
| 62 | TEST_TRUE(double_eq(test_output[0], expected_output, OUTPUT_EPS)); | ||
| 63 | |||
| 64 | nnDeleteQueryObject(&query); | ||
| 65 | nnDeleteNet(&net); | ||
| 66 | } | ||
diff --git a/src/lib/test/train_xor_test.c b/src/lib/test/train_xor_test.c new file mode 100644 index 0000000..6ddc6e0 --- /dev/null +++ b/src/lib/test/train_xor_test.c | |||
| @@ -0,0 +1,66 @@ | |||
| 1 | #include <neuralnet/train.h> | ||
| 2 | |||
| 3 | #include <neuralnet/matrix.h> | ||
| 4 | #include <neuralnet/neuralnet.h> | ||
| 5 | #include "activation.h" | ||
| 6 | #include "neuralnet_impl.h" | ||
| 7 | |||
| 8 | #include "test.h" | ||
| 9 | #include "test_util.h" | ||
| 10 | |||
| 11 | #include <assert.h> | ||
| 12 | |||
| 13 | TEST_CASE(neuralnet_train_xor_test) { | ||
| 14 | const int num_layers = 2; | ||
| 15 | const int layer_sizes[] = { 2, 2, 1 }; | ||
| 16 | const nnActivation layer_activations[] = { nnRelu, nnIdentity }; | ||
| 17 | |||
| 18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | ||
| 19 | assert(net); | ||
| 20 | |||
| 21 | // Train. | ||
| 22 | |||
| 23 | #define N 4 | ||
| 24 | const R inputs[N][2] = { { 0., 0. }, { 0., 1. }, { 1., 0. }, { 1., 1. } }; | ||
| 25 | const R targets[N] = { 0., 1., 1., 0. }; | ||
| 26 | |||
| 27 | nnMatrix inputs_matrix = nnMatrixMake(N, 2); | ||
| 28 | nnMatrix targets_matrix = nnMatrixMake(N, 1); | ||
| 29 | nnMatrixInit(&inputs_matrix, (const R*)inputs); | ||
| 30 | nnMatrixInit(&targets_matrix, targets); | ||
| 31 | |||
| 32 | nnTrainingParams params = { | ||
| 33 | .learning_rate = 0.1, | ||
| 34 | .max_iterations = 500, | ||
| 35 | .seed = 0, | ||
| 36 | .weight_init = nnWeightInit01, | ||
| 37 | .debug = false, | ||
| 38 | }; | ||
| 39 | |||
| 40 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | ||
| 41 | |||
| 42 | // Test. | ||
| 43 | |||
| 44 | #define M 4 | ||
| 45 | |||
| 46 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/M); | ||
| 47 | |||
| 48 | const R test_inputs[M][2] = { { 0., 0. }, { 1., 0. }, { 0., 1. }, { 1., 1. } }; | ||
| 49 | nnMatrix test_inputs_matrix = nnMatrixMake(M, 2); | ||
| 50 | nnMatrixInit(&test_inputs_matrix, (const R*)test_inputs); | ||
| 51 | nnQuery(net, query, &test_inputs_matrix); | ||
| 52 | |||
| 53 | const R expected_outputs[M] = { 0., 1., 1., 0. }; | ||
| 54 | for (int i = 0; i < M; ++i) { | ||
| 55 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | ||
| 56 | printf("\nInput: (%f, %f), Output: %f, Expected: %f\n", | ||
| 57 | test_inputs[i][0], test_inputs[i][1], test_output, expected_outputs[i]); | ||
| 58 | } | ||
| 59 | for (int i = 0; i < M; ++i) { | ||
| 60 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | ||
| 61 | TEST_TRUE(double_eq(test_output, expected_outputs[i], OUTPUT_EPS)); | ||
| 62 | } | ||
| 63 | |||
| 64 | nnDeleteQueryObject(&query); | ||
| 65 | nnDeleteNet(&net); | ||
| 66 | } | ||
