diff options
Diffstat (limited to 'test')
| -rw-r--r-- | test/quat_test.c | 85 | ||||
| -rw-r--r-- | test/vec3_test.c | 68 |
2 files changed, 153 insertions, 0 deletions
diff --git a/test/quat_test.c b/test/quat_test.c new file mode 100644 index 0000000..83519c3 --- /dev/null +++ b/test/quat_test.c | |||
| @@ -0,0 +1,85 @@ | |||
| 1 | #include <math/quat.h> | ||
| 2 | |||
| 3 | #include <math/float.h> | ||
| 4 | |||
| 5 | #include "test.h" | ||
| 6 | |||
| 7 | #include <stdio.h> | ||
| 8 | |||
| 9 | static const float eps = 1e-7; | ||
| 10 | |||
| 11 | static inline void print_quat(quat q) { | ||
| 12 | printf("{ %f, %f, %f, %f }\n", q.x, q.y, q.z, q.w); | ||
| 13 | } | ||
| 14 | |||
| 15 | static inline void print_vec3(vec3 v) { | ||
| 16 | printf("{ %f, %f, %f }\n", v.x, v.y, v.z); | ||
| 17 | } | ||
| 18 | |||
| 19 | /// Slerp between two vectors forming an acute angle. | ||
| 20 | TEST_CASE(quat_slerp_acute_angle) { | ||
| 21 | const R angle1 = 0; | ||
| 22 | const R angle2 = PI / 4; | ||
| 23 | const R t = 0.5; | ||
| 24 | |||
| 25 | const quat a = qmake_rot(angle1, 0, 0, 1); | ||
| 26 | const quat b = qmake_rot(angle2, 0, 0, 1); | ||
| 27 | |||
| 28 | const quat c = qslerp(a, b, t); | ||
| 29 | const vec3 result = qrot(c, vec3_make(1, 0, 0)); | ||
| 30 | |||
| 31 | const R angle3 = lerp(angle1, angle2, t); | ||
| 32 | const vec3 expected = vec3_make(cos(angle3), sin(angle3), 0.0); | ||
| 33 | TEST_TRUE(vec3_eq(result, expected, eps)); | ||
| 34 | } | ||
| 35 | |||
| 36 | /// Slerp between two vectors forming an obtuse angle (negative dot product). | ||
| 37 | /// | ||
| 38 | /// The interpolation must follow the shortest path between both vectors. | ||
| 39 | TEST_CASE(quat_slerp_obtuse_angle) { | ||
| 40 | const R angle1 = 0; | ||
| 41 | const R angle2 = 3 * PI / 4; | ||
| 42 | const R t = 0.5; | ||
| 43 | |||
| 44 | const quat a = qmake_rot(angle1, 0, 0, 1); | ||
| 45 | const quat b = qmake_rot(angle2, 0, 0, 1); | ||
| 46 | |||
| 47 | const quat c = qslerp(a, b, t); | ||
| 48 | const vec3 result = qrot(c, vec3_make(1, 0, 0)); | ||
| 49 | |||
| 50 | const R angle3 = lerp(angle1, angle2, t); | ||
| 51 | const vec3 expected = vec3_make(cos(angle3), sin(angle3), 0.0); | ||
| 52 | TEST_TRUE(vec3_eq(result, expected, eps)); | ||
| 53 | } | ||
| 54 | |||
| 55 | /// Slerp between two vectors forming a reflex angle. | ||
| 56 | /// | ||
| 57 | /// The interpolation must follow the shortest path between both vectors. | ||
| 58 | TEST_CASE(quat_slerp_reflex_angle) { | ||
| 59 | const R angle1 = 0; | ||
| 60 | const R angle2 = 5 * PI / 4; | ||
| 61 | const R t = 0.5; | ||
| 62 | |||
| 63 | const quat a = qmake_rot(angle1, 0, 0, 1); | ||
| 64 | const quat b = qmake_rot(angle2, 0, 0, 1); | ||
| 65 | |||
| 66 | const quat c = qslerp(a, b, t); | ||
| 67 | const vec3 result = qrot(c, vec3_make(1, 0, 0)); | ||
| 68 | |||
| 69 | // Because it's a reflex angle, we expect the rotation to follow the short | ||
| 70 | // path from 'a' down clockwise to 'b'. Could add +PI to the result of lerp(), | ||
| 71 | // but that adds more error than negating cos and sin. | ||
| 72 | const R angle3 = lerp(angle1, angle2, t); | ||
| 73 | const vec3 expected = vec3_make(-cos(angle3), -sin(angle3), 0.0); | ||
| 74 | TEST_TRUE(vec3_eq(result, expected, eps)); | ||
| 75 | } | ||
| 76 | |||
| 77 | TEST_CASE(quat_mat4_from_quat) { | ||
| 78 | const R angle = PI / 8; | ||
| 79 | const quat q = qmake_rot(angle, 0, 0, 1); | ||
| 80 | |||
| 81 | const mat4 m = mat4_from_quat(q); | ||
| 82 | const vec3 p = mat4_mul_vec3(m, vec3_make(1, 0, 0), /*w=*/1); | ||
| 83 | |||
| 84 | TEST_TRUE(vec3_eq(p, vec3_make(cos(angle), sin(angle), 0), eps)); | ||
| 85 | } | ||
diff --git a/test/vec3_test.c b/test/vec3_test.c new file mode 100644 index 0000000..886fee3 --- /dev/null +++ b/test/vec3_test.c | |||
| @@ -0,0 +1,68 @@ | |||
| 1 | #include <math/vec3.h> | ||
| 2 | |||
| 3 | #include <math/float.h> | ||
| 4 | |||
| 5 | #include "test.h" | ||
| 6 | |||
| 7 | #include <stdio.h> | ||
| 8 | |||
| 9 | static const float eps = 1e-7; | ||
| 10 | |||
| 11 | static inline void print_vec3(vec3 v) { | ||
| 12 | printf("{ %f, %f, %f }\n", v.x, v.y, v.z); | ||
| 13 | } | ||
| 14 | |||
| 15 | /// Slerp between two vectors forming an acute angle. | ||
| 16 | TEST_CASE(vec3_slerp_acute_angle) { | ||
| 17 | const R angle1 = 0; | ||
| 18 | const R angle2 = PI / 4; | ||
| 19 | const R t = 0.5; | ||
| 20 | |||
| 21 | const vec3 a = vec3_make(cos(angle1), sin(angle1), 0); | ||
| 22 | const vec3 b = vec3_make(cos(angle2), sin(angle2), 0); | ||
| 23 | |||
| 24 | const vec3 result = vec3_slerp(a, b, t); | ||
| 25 | |||
| 26 | const R angle3 = lerp(angle1, angle2, t); | ||
| 27 | const vec3 expected = vec3_make(cos(angle3), sin(angle3), 0.0); | ||
| 28 | TEST_TRUE(vec3_eq(result, expected, eps)); | ||
| 29 | } | ||
| 30 | |||
| 31 | /// Slerp between two vectors forming an obtuse angle (negative dot product). | ||
| 32 | /// | ||
| 33 | /// The interpolation must follow the shortest path between both vectors. | ||
| 34 | TEST_CASE(vec3_slerp_obtuse_angle) { | ||
| 35 | const R angle1 = 0; | ||
| 36 | const R angle2 = 3 * PI / 4; | ||
| 37 | const R t = 0.5; | ||
| 38 | |||
| 39 | const vec3 a = vec3_make(cos(angle1), sin(angle1), 0); | ||
| 40 | const vec3 b = vec3_make(cos(angle2), sin(angle2), 0); | ||
| 41 | |||
| 42 | const vec3 result = vec3_slerp(a, b, t); | ||
| 43 | |||
| 44 | const R angle3 = lerp(angle1, angle2, t); | ||
| 45 | const vec3 expected = vec3_make(cos(angle3), sin(angle3), 0.0); | ||
| 46 | TEST_TRUE(vec3_eq(result, expected, eps)); | ||
| 47 | } | ||
| 48 | |||
| 49 | /// Slerp between two vectors forming a reflex angle. | ||
| 50 | /// | ||
| 51 | /// The interpolation must follow the shortest path between both vectors. | ||
| 52 | TEST_CASE(vec3_slerp_reflex_angle) { | ||
| 53 | const R angle1 = 0; | ||
| 54 | const R angle2 = 5 * PI / 4; | ||
| 55 | const R t = 0.5; | ||
| 56 | |||
| 57 | const vec3 a = vec3_make(cos(angle1), sin(angle1), 0); | ||
| 58 | const vec3 b = vec3_make(cos(angle2), sin(angle2), 0); | ||
| 59 | |||
| 60 | const vec3 result = vec3_slerp(a, b, t); | ||
| 61 | |||
| 62 | // slerp goes from a to b following the shortest path, which is down from a | ||
| 63 | // towards b. The resulting angle is therefore +PI of the angle we get from | ||
| 64 | // lerping the two input angles. | ||
| 65 | const R angle3 = lerp(angle1, angle2, t) + PI; | ||
| 66 | const vec3 expected = vec3_make(cos(angle3), sin(angle3), 0.0); | ||
| 67 | TEST_TRUE(vec3_eq(result, expected, 1e-5)); | ||
| 68 | } | ||
