
Introduction to Path Tracing

Marc Sunet

Table of contents

From Ray Tracing to Path Tracing

The Rendering Equation

Monte Carlo Integration

A Basic Path Tracer

Variance Reduction and Optimisation Techniques

Additional Resources

Plan

From Ray Tracing to Path Tracing

The Rendering Equation

Monte Carlo Integration

A Basic Path Tracer

Variance Reduction and Optimisation Techniques

Additional Resources

Ray Tracing

I Ray tracing is a rendering technique that generates images by
tracing rays through each pixel and simulating the interaction of
light with the objects in a scene.

Whitted Ray Tracing

I First recursive ray tracer by Turner Whitted (1979).

I Simulates (perfect specular) reflections, refractions and (hard)
shadows.

Whitted Ray Tracing

r e n d e r i m a g e () :
f o r each p i x e l :

r a y = c a m e r a r a y (p i x e l)
c o l o u r = t r a c e (r a y)

t r a c e (r a y) :
p o i n t , normal = i n t e r s e c t (ray , s c e n e)
c o l o u r = shade (p o i n t , normal)

shade (p o i n t , normal) :
c o l o u r = 0
f o r each l i g h t s o u r c e :

t r a c e shadow r a y to l i g h t s o u r c e
i f i n t e r s e c t s (shadow ray , l i g h t s o u r c e)

c o l o u r = c o l o u r + d i r e c t i l l u m i n a t i o n
i f s p e c u l a r :

c o l o u r = c o l o u r + t r a c e (r e f l e c t e d / r e f r a c t e d r a y)

Whitted Ray Tracing

Limitations:

I No indirect illumination in diffuse surfaces.

I Hard shadows only.

I No glossy surfaces.

I No subsurface scattering.

I No participating media.

I No focusing effects due to camera lens.

I No motion blur.

I etc.

Whitted ray tracing is not a full global illumination algorithm.

Path Tracing

https://www.youtube.com/watch?v=abqAanC2NZs Brigade

https://www.youtube.com/watch?v=abqAanC2NZs
https://brigade.otoy.com/

Path Tracing

I Generalisation of the original ray tracing algorithm.

I Full global illumination light transport algorithm.

I Stochastically samples all light paths to simulate all light/scene
interactions.

I Algorithm is unbiased1 if implemented carefully.

Buzzword definition to impress friends & family:

”Mathematically, path tracing is a continuous Markov chain random walk
technique for solving the rendering equation. The solution technique can
be seen as a Monte Carlo sampling of the Neumann series expansion of
the rendering equation.” — [Realistic Image Synthesis Using Photon
Mapping]

1https://en.wikipedia.org/wiki/Bias of an estimator

https://en.wikipedia.org/wiki/Bias_of_an_estimator

Plan

From Ray Tracing to Path Tracing

The Rendering Equation

Monte Carlo Integration

A Basic Path Tracer

Variance Reduction and Optimisation Techniques

Additional Resources

Light Reflection

Before delving into the path tracing algorithm, we need to understand
what are we actually trying to compute.

Goal: generate an image of the scene being viewed.

I Viewer sees point x through a given pixel.

I Light reflected at x towards viewer depends on light incident at x
from all directions in the normal-oriented hemisphere.

I Reflected light also depends on the properties of the surface.

Light Reflection

To compute light reflected towards viewer, we therefore need two
ingredients:

I Determine the light incident at x from all directions in the
hemisphere → ray tracing.

I Determine the properties of the surface, which describe how incident
light is reflected → BRDF2.

2Although more general light reflection models exist, we will focus on the BRDF to
keep it simple.

The BRDF

Q: How much light is reflected at point p in direction ωo due to light
coming in direction ωi?

A: BRDF f(p, ωo , ωi)

The BRDF describes how light reflects off a surface.

Common BRDFs

Specular reflects light in a single direction - the direction of mirror
reflection.

Diffuse reflects light equally in all directions.

Glossy reflects light in a cone centered in the direction of mirror
reflection.

The Rendering Equation

Determines outgoing radiance as a
function of incoming radiance and
surface BRDF.

Lo(p, ωo) =

∫
Ω

f (p, ωo , ωi) Li (p, ωi) cos θi dωi

Lo(p, ωo) total outgoing radiance reflected at p in direction ωo .

Li (p, ωi) radiance incident at p in direction ωi .

f (p, ωo , ωi) determines how much radiance is reflected at p in direction
ωo due to irradiance incident at p in direction ωi .

3

cos θi Lambert’s cosine law.

3For a full definition, see the BRDF section on Wikipedia.

https://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function

Plan

From Ray Tracing to Path Tracing

The Rendering Equation

Monte Carlo Integration

A Basic Path Tracer

Variance Reduction and Optimisation Techniques

Additional Resources

Monte Carlo Integration

To compute the light that is reflected off a surface, we need to find a
solution to the rendering equation.

An analytical solution does not generally exist, so we rely on methods
that approximate the integral numerically.

Several methods exist to this end. However, we will focus solely on
Monte Carlo integration.

Monte Carlo Integration

A technique for numerical integration that uses random numbers.

Pros

I Flexible and easy to implement: just need to evaluate the integrand
at arbitrary points in order to evaluate the value of the integral.

I The convergence rate is independent of the number of dimensions in
the integral. Monte Carlo integration does not suffer from the curse
of dimensionality, where convergence rate grows exponentially with
the number of dimensions.

I The number of samples is arbitrary; it does not depend on the
dimensions of the integral.

Cons

I Variance is proportional to 1√
N

, where N is the number of samples,

i.e. if you want to reduce variance by half, you need to quadruple
the number of samples.

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality

Monte Carlo Integration

Given

I =

∫ b

a

f (x)dx

evaluate integral by taking the average value of f (x) along the interval
[a, b] and multiply by the length of the interval b − a:

a b

average f (x)

Monte Carlo Integration

To find the average value of f (x), evaluate f (x) at N different locations
X1 . . .XN , where X1 . . .XN are uniformly distributed random numbers in
the interval [a, b]:

f̄ (x) =
1

N

N∑
i=1

f (Xi)

a b

Monte Carlo Estimator

The average value of f (x) multiplied by the length of the interval b − a
gives us the Monte Carlo estimator:

FN =
b − a

N

N∑
i=1

f (Xi)

In the limit, as we gather more and more samples, the Monte Carlo
estimator takes on the value of the integral:

lim
N→∞

FN =

∫ b

a

f (x)dx

Monte Carlo Integration: Two Interpretations

Monte Carlo Estimator: Proof

The expected value of the Monte Carlo estimator is equal to the integral:

E [FN] =

∫ b

a

f (x)dx

Proof

Since X1 . . .XN are uniformly distributed, their pdf p(x) must be equal to
1

b−a . Then...

Monte Carlo Estimator: Proof

E [FN] = E

[
b − a

N

N∑
i=1

f (Xi)

]

=
b − a

N

N∑
i=1

E [f (Xi)]

=
b − a

N

N∑
i=1

∫ b

a

f (x) p(x)dx

=
1

N

N∑
i=1

∫ b

a

f (x)dx

=

∫ b

a

f (x)dx

Monte Carlo Estimator: Generalised Version

The cool part about Monte Carlo integration is that the random variables
Xi need not actually follow a uniform distribution. Monte Carlo
integration works with any arbitrary pdf as long as the variables are
independent and identically distributed (i.i.d).

Given X1 . . .XN distributed according to pdf p(x), the generalised Monte
Carlo estimator is given by:

FN =
1

N

N∑
i=1

f (Xi)

p(Xi)

Again, the expected value of the estimator is the value of the integral:

E [FN] =

∫ b

a

f (x)dx

Monte Carlo Estimator: Proof

Proof

E [FN] = E

[
1

N

N∑
i=1

f (Xi)

p(Xi)

]

=
1

N

N∑
i=1

E

[
f (Xi)

p(Xi)

]

=
1

N

N∑
i=1

∫ b

a

f (x)

p(x)
p(x)dx

=
1

N

N∑
i=1

∫ b

a

f (x)dx

=

∫ b

a

f (x)dx

Importance Sampling

Having the freedom to choose any arbitrary pdf p(x) is very useful in
path tracing.

Importance sampling allows us to better approximate the integral by
choosing an appropriate pdf. The idea is to choose a pdf p(x) that is
similar to the function being integrated f (x):

p(x) ∼ f (x)

It can be shown that using importance sampling results in faster
convergence than using an arbitrary pdf.

We will re-visit this concept later with specific examples.

Plan

From Ray Tracing to Path Tracing

The Rendering Equation

Monte Carlo Integration

A Basic Path Tracer

Variance Reduction and Optimisation Techniques

Additional Resources

Path Tracing 101

Rendering equation:

Lo(p, ωo) =

∫
Ω

f (p, ωo , ωi) Li (p, ωi) cos θi dωi

Monte Carlo estimator:

FN =
1

N

N∑
i=1

f (Xi)

p(Xi)

Monte Carlo path tracing:

〈Lo(p, ωo)〉 =
1

N

N∑
i=1

f (p, ωo , ωi) Li (p, ωi) cos θi
p(ωi)

Path Tracing 101

I For every pixel, distribute N samples in that pixel.

I For every sample, generate a ray and trace a random path in the
scene by randomly bouncing the ray around.

I For every bounce, compute the incoming radiance along the
randomly reflected/refracted ray, weigh the result by the BRDF and
divide by the pdf.

I Stop the recursion when you reach a maximum number of bounces
or hit an emissive surface / light.

I Average the results of the N samples to produce the pixel’s final
colour.

Computing a Ray Bounce

Lo
Li

N

c

θ

Lo is the outgoing radiance.

Li is the incoming radiance along a randomly reflected ray.

Outgoing radiance for this sample is c Li , where

c =
f (p, ωo , ωi) cos θ

p(ωi)

Path Tracing

L0

L1

. . .

LN

c1

c2

cN

L0 = c1L1

= c1(c2L2)

= c1(c2(c3L3))

= c1(c2(c3(. . . (cNLN) . . .)

= c1c2 . . . cNLN

= LN

N∏
i=1

ci

Path Tracing

r e n d e r i m a g e () :
f o r each p i x e l :

c o l o u r = 0
f o r each sample :

r a y = c a m e r a r a y (p i x e l)
c o l o u r += t r a c e (r a y)

c o l o u r = c o l o u r / #s a m pl e s

Path Tracing

t r a c e (r a y) :
c o e f f = 1
c o l o u r = 0
f o r i i n 1 . . . max depth :

h i t = i n t e r s e c t (ray , s c e n e)
i f h i t l i g h t :

c o l o u r = c o e f f ∗ e m i s s i o n
r e t u r n

e l s e :
ray , b r d f , pdf = random sample (h i t)
c o e f f ∗= b r d f ∗ dot (normal , r a y) / pdf

i f r e a c h a b l e (l i g h t) :
c o l o u r = c o e f f ∗ e m i s s i o n

Path Tracing

ray , b r d f , pdf = random sample (h i t)

The random sample function must return:

I A randomly reflected ray.

I The value of the surface’s BRDF for the in / out ray pair.

I The value of the pdf for the reflected ray.

This kind of random sampling will not work very efficiently in practise,
however, so let us see why this is the case and improve the existing path
tracer instead of going any deeper into the random sample function...

Plan

From Ray Tracing to Path Tracing

The Rendering Equation

Monte Carlo Integration

A Basic Path Tracer

Variance Reduction and Optimisation Techniques

Additional Resources

(Multiple) Importance Sampling

For a basic path tracer to work properly, we should perform two
optimisations:

I BRDF sampling

I Light sampling

These are two forms of importance sampling. For more details, see:

http://www.slideshare.net/takahiroharada/introduction-to-
bidirectional-path-tracing-bdpt-implementation-using-

opencl-cedec-2015

http://www.slideshare.net/takahiroharada/introduction-to-bidirectional-path-tracing-bdpt-implementation-using-opencl-cedec-2015
http://www.slideshare.net/takahiroharada/introduction-to-bidirectional-path-tracing-bdpt-implementation-using-opencl-cedec-2015
http://www.slideshare.net/takahiroharada/introduction-to-bidirectional-path-tracing-bdpt-implementation-using-opencl-cedec-2015

BRDF Sampling

BRDF sampling is an application of importance sampling in Monte Carlo
path tracing.

Recall from the Monte Carlo integration section that we are free to
choose whatever pdf p(x) we fancy to approximate an integral.

BRDF sampling chooses a pdf p(x) that is similar to the surface’s BRDF,
resulting in faster convergence than just randomly shooting rays.

BRDF Sampling: Specular Reflection

Consider what happens when we shoot randomly reflected rays from a
perfectly specular surface:

Lo
reflect(Lo, N)N

c

θ

brdf = 0

brdf = 0

brdf = 0
brdf = 1

The specular BRDF is 1 in the direction of mirror reflection, and 0
everywhere else.

We cannot approximate the integral by shooting random rays; we need to
sample the direction of mirror reflection explicitly.

BRDF Sampling: Specular Reflection

To sample a specular BRDF, we define the following function:

b r d f s a m p l e s p e c u l a r () :
r a y = r e f l e c t (Lo , N)
b r d f = ks / dot (ray ,N)
pdf = 1

This function takes care of three things:

I Explicitly samples the direction of mirror reflection by always
returning that direction.

I Returns the BRDF in that direction, which is essentially* ks , where
ks is the specular reflectance.

I Returns the pdf in that direction, which is simply 1.

* The 1
cos θ term in the BRDF (1 / dot(ray, N)) is there to cancel out the

cos θ term in the rendering equation.

BRDF Sampling: Diffuse Reflection

Similarly, consider shooting random rays from a diffuse surface:

Lo
N

c

big cos θ big cos θ

small cos θ

small cos θ

θ

Because of the cos θ term in the rendering equation, rays at grazing
angles have little contribution to the final result.

BRDF Sampling: Diffuse Reflection

For faster convergence on diffuse surfaces, we should focus more on rays
near the normal than at grazing angles.

To this end, instead of sampling the hemisphere uniformly, we sample it
according to a cosine-weighted distribution:

p(ω) ∝ cos θ

As usual, the pdf must add up to 1:∫
Ω

k cos θ dω = 1⇔ k =
1

π

Therefore

p(ω) =
cos θ

π

BRDF Sampling: Diffuse Reflection

Again, we define a function to sample the BRDF:

b r d f s a m p l e d i f f u s e () :
r a y = c o s i n e w e i g h t e d h e m i s p h e r e s a m p l e (N)
b r d f = kd / p i
pdf = dot (ray ,N) / p i

This function takes care of three things:

I Samples a random direction in the hemisphere according to a
cosine-weighted distribution.

I Returns the BRDF in that direction, kd
π , where kd is the diffuse

reflectance (i.e. surface colour or albedo).

I Returns the pdf in that direction, which is cos θ
π as shown previously.

BRDF Sampling: Wrap-up

brdf sample() ray BRDF pdf

specular reflect(Lo , N) ks
cos θ 1

diffuse cosine hemisphere() kd
π

cos θ
π

Note: for brevity, we have not shown how to derive the BRDF values
above. See the Additional Resources section for more details.

BRDF Sampling

trace(ray):

coeff = 1

colour = 0

for i in 1... max_depth:

hit = intersect(ray , scene)

if hit light:

colour = coeff * emission

return

else:

ray , brdf , pdf = brdf_sample(hit)

coeff *= brdf * dot(normal , ray) / pdf

if reachable(light):

colour = coeff * emission

Light Sampling

It would be a shame to compute 20 light bounces only to realise that you
have to return a radiance of zero simply because you cannot find a light...

?

Light Sampling

...so just sample the lights explicitly at every bounce (if a path exists):

Light Sampling

We define another set of functions that we will call brdf eval() to
evaluate the BRDF given an arbitrary pair of in / out ray directions.

I The out direction is the direction of outgoing radiance.

I The in direction is the direction towards the light source.

b r d f e v a l s p e c u l a r () :
b r d f = 0 // s p e c u l a r b r d f i s 0 f o r a l l d i r e c t i o n s
pdf = 0 // e x c e p t d i r e c t i o n o f m i r r o r r e f l e c t i o n

b r d f e v a l d i f f u s e () :
b r d f = k / p i // d i f f u s e b r d f i s c o n s t a n t
pdf = dot (ray ,N) / p i // f o r a l l d i r e c t i o n s

Path Tracing with Light Sampling

L0

L1

. . .

LDN

c1

c2

cDN

cD1

LD1

L2

LD2
cD2

L0 = cD1LD1 + c1L1

= cD1LD1 + c1(cD2LD2 + c2L2)

= cD1LD1 + c1(cD2LD2 + c2(. . . (cDN−1LDN−1 + cN−1(LN−1 + cDNLDN)) . . .)

= LN−1

N−1∏
i=1

ci +
N∑
i=1

cDiLDi

i−1∏
j=0

cj , c0 = 1

Light Sampling

trace(ray):

coeff = 1

colour = 0

for i in 1... max_depth:

hit = intersect(ray , scene)

if hit light:

colour = coeff * emission

return

if reachable(light):

brdf , pdf = brdf_eval(hit , light_ray)

c = coeff * brdf * dot(normal , ray) / pdf

colour += c * emission

ray , brdf , pdf = brdf_sample(hit)

coeff *= brdf * dot(normal , ray) / pdf

Russian Roulette

Currently, our path termination strategy is not very intelligent: if a path
has little contribution to the result, it makes little sense to compute
additional bounces.

In addition, we have introduced bias in our path tracer by cutting the ray
length to a given depth (i.e. we are not sampling all possible light paths).

Russian Roulette is an importance sampling technique that allows us to
focus on paths that have an important contribution to the result by
randomly terminating rays.

In addition, Russian Roulette gives us, on average, the same value as if
we were tracing paths of infinite length, yielding an unbiased result.

Plan

From Ray Tracing to Path Tracing

The Rendering Equation

Monte Carlo Integration

A Basic Path Tracer

Variance Reduction and Optimisation Techniques

Additional Resources

Additional Resources

Physically Based Rendering: From Theory To Implementa-
tion
http://www.pbrt.org/

Realistic Image Synthesis Using Photon Mapping
http://graphics.ucsd.edu/~henrik/papers/book/

Ray Tracing from the Ground Up
http://www.raytracegroundup.com/

http://www.pbrt.org/
http://graphics.ucsd.edu/~henrik/papers/book/
http://www.raytracegroundup.com/

Additional Resources

Mathematical Foundations of Monte Carlo Methods
http://www.scratchapixel.com/lessons/
mathematics-physics-for-computer-graphics/

monte-carlo-methods-mathematical-foundations

Monte Carlo Methods in Practice
http://www.scratchapixel.com/lessons/
mathematics-physics-for-computer-graphics/

monte-carlo-methods-in-practice

http://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations
http://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations
http://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations
http://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice
http://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice
http://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice

	From Ray Tracing to Path Tracing
	The Rendering Equation
	Monte Carlo Integration
	A Basic Path Tracer
	Variance Reduction and Optimisation Techniques
	Additional Resources

