From 411f66a2540fa17c736116d865e0ceb0cfe5623b Mon Sep 17 00:00:00 2001 From: jeanne Date: Wed, 11 May 2022 09:54:38 -0700 Subject: Initial commit. --- src/lib/test/neuralnet_test.c | 92 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 92 insertions(+) create mode 100644 src/lib/test/neuralnet_test.c (limited to 'src/lib/test/neuralnet_test.c') diff --git a/src/lib/test/neuralnet_test.c b/src/lib/test/neuralnet_test.c new file mode 100644 index 0000000..14d9438 --- /dev/null +++ b/src/lib/test/neuralnet_test.c @@ -0,0 +1,92 @@ +#include + +#include +#include "activation.h" +#include "neuralnet_impl.h" + +#include "test.h" +#include "test_util.h" + +#include + +TEST_CASE(neuralnet_perceptron_test) { + const int num_layers = 1; + const int layer_sizes[] = { 1, 1 }; + const nnActivation layer_activations[] = { nnSigmoid }; + const R weights[] = { 0.3 }; + + nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); + assert(net); + nnSetWeights(net, weights); + + nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); + + const R input[] = { 0.9 }; + R output[1]; + nnQueryArray(net, query, input, output); + + const R expected_output = sigmoid(input[0] * weights[0]); + printf("\nOutput: %f, Expected: %f\n", output[0], expected_output); + TEST_TRUE(double_eq(output[0], expected_output, EPS)); + + nnDeleteQueryObject(&query); + nnDeleteNet(&net); +} + +TEST_CASE(neuralnet_xor_test) { + const int num_layers = 2; + const int layer_sizes[] = { 2, 2, 1 }; + const nnActivation layer_activations[] = { nnRelu, nnIdentity }; + const R weights[] = { + 1, 1, 1, 1, // First (hidden) layer. + 1, -2 // Second (output) layer. + }; + const R biases[] = { + 0, -1, // First (hidden) layer. + 0 // Second (output) layer. + }; + + nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); + assert(net); + nnSetWeights(net, weights); + nnSetBiases(net, biases); + + // First layer weights. + TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 0), 1); + TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 1), 1); + TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 2), 1); + TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 3), 1); + // Second layer weights. + TEST_EQUAL(nnMatrixAt(&net->weights[1], 0, 0), 1); + TEST_EQUAL(nnMatrixAt(&net->weights[1], 0, 1), -2); + // First layer biases. + TEST_EQUAL(nnMatrixAt(&net->biases[0], 0, 0), 0); + TEST_EQUAL(nnMatrixAt(&net->biases[0], 0, 1), -1); + // Second layer biases. + TEST_EQUAL(nnMatrixAt(&net->biases[1], 0, 0), 0); + + // Test. + + #define M 4 + + nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/M); + + const R test_inputs[M][2] = { { 0., 0. }, { 1., 0. }, { 0., 1. }, { 1., 1. } }; + nnMatrix test_inputs_matrix = nnMatrixMake(M, 2); + nnMatrixInit(&test_inputs_matrix, (const R*)test_inputs); + nnQuery(net, query, &test_inputs_matrix); + + const R expected_outputs[M] = { 0., 1., 1., 0. }; + for (int i = 0; i < M; ++i) { + const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); + printf("\nInput: (%f, %f), Output: %f, Expected: %f\n", + test_inputs[i][0], test_inputs[i][1], test_output, expected_outputs[i]); + } + for (int i = 0; i < M; ++i) { + const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); + TEST_TRUE(double_eq(test_output, expected_outputs[i], OUTPUT_EPS)); + } + + nnDeleteQueryObject(&query); + nnDeleteNet(&net); +} -- cgit v1.2.3