diff options
Diffstat (limited to 'src/lib/test')
| -rw-r--r-- | src/lib/test/neuralnet_test.c | 103 | ||||
| -rw-r--r-- | src/lib/test/train_linear_perceptron_non_origin_test.c | 46 | ||||
| -rw-r--r-- | src/lib/test/train_linear_perceptron_test.c | 44 | ||||
| -rw-r--r-- | src/lib/test/train_sigmoid_test.c | 46 | ||||
| -rw-r--r-- | src/lib/test/train_xor_test.c | 55 |
5 files changed, 169 insertions, 125 deletions
diff --git a/src/lib/test/neuralnet_test.c b/src/lib/test/neuralnet_test.c index 14d9438..0f8d7b8 100644 --- a/src/lib/test/neuralnet_test.c +++ b/src/lib/test/neuralnet_test.c | |||
| @@ -1,8 +1,8 @@ | |||
| 1 | #include <neuralnet/neuralnet.h> | 1 | #include <neuralnet/neuralnet.h> |
| 2 | 2 | ||
| 3 | #include <neuralnet/matrix.h> | ||
| 4 | #include "activation.h" | 3 | #include "activation.h" |
| 5 | #include "neuralnet_impl.h" | 4 | #include "neuralnet_impl.h" |
| 5 | #include <neuralnet/matrix.h> | ||
| 6 | 6 | ||
| 7 | #include "test.h" | 7 | #include "test.h" |
| 8 | #include "test_util.h" | 8 | #include "test_util.h" |
| @@ -10,23 +10,31 @@ | |||
| 10 | #include <assert.h> | 10 | #include <assert.h> |
| 11 | 11 | ||
| 12 | TEST_CASE(neuralnet_perceptron_test) { | 12 | TEST_CASE(neuralnet_perceptron_test) { |
| 13 | const int num_layers = 1; | 13 | const int num_layers = 2; |
| 14 | const int layer_sizes[] = { 1, 1 }; | 14 | const int input_size = 1; |
| 15 | const nnActivation layer_activations[] = { nnSigmoid }; | 15 | const R weights[] = {0.3}; |
| 16 | const R weights[] = { 0.3 }; | 16 | const R biases[] = {0.0}; |
| 17 | const nnLayer layers[] = { | ||
| 18 | {.type = nnLinear, | ||
| 19 | .linear = | ||
| 20 | {.weights = nnMatrixFromArray(1, 1, weights), | ||
| 21 | .biases = nnMatrixFromArray(1, 1, biases)}}, | ||
| 22 | {.type = nnSigmoid}, | ||
| 23 | }; | ||
| 17 | 24 | ||
| 18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | 25 | nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); |
| 19 | assert(net); | 26 | assert(net); |
| 20 | nnSetWeights(net, weights); | ||
| 21 | 27 | ||
| 22 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | 28 | nnQueryObject* query = nnMakeQueryObject(net, 1); |
| 23 | 29 | ||
| 24 | const R input[] = { 0.9 }; | 30 | const R input[] = {0.9}; |
| 25 | R output[1]; | 31 | R output[1]; |
| 26 | nnQueryArray(net, query, input, output); | 32 | nnQueryArray(net, query, input, output); |
| 27 | 33 | ||
| 28 | const R expected_output = sigmoid(input[0] * weights[0]); | 34 | const R expected_output = sigmoid(input[0] * weights[0]); |
| 29 | printf("\nOutput: %f, Expected: %f\n", output[0], expected_output); | 35 | printf( |
| 36 | "\n[neuralnet_perceptron_test] Output: %f, Expected: %f\n", output[0], | ||
| 37 | expected_output); | ||
| 30 | TEST_TRUE(double_eq(output[0], expected_output, EPS)); | 38 | TEST_TRUE(double_eq(output[0], expected_output, EPS)); |
| 31 | 39 | ||
| 32 | nnDeleteQueryObject(&query); | 40 | nnDeleteQueryObject(&query); |
| @@ -34,53 +42,66 @@ TEST_CASE(neuralnet_perceptron_test) { | |||
| 34 | } | 42 | } |
| 35 | 43 | ||
| 36 | TEST_CASE(neuralnet_xor_test) { | 44 | TEST_CASE(neuralnet_xor_test) { |
| 37 | const int num_layers = 2; | 45 | // First (hidden) layer. |
| 38 | const int layer_sizes[] = { 2, 2, 1 }; | 46 | const R weights0[] = {1, 1, 1, 1}; |
| 39 | const nnActivation layer_activations[] = { nnRelu, nnIdentity }; | 47 | const R biases0[] = {0, -1}; |
| 40 | const R weights[] = { | 48 | // Second (output) layer. |
| 41 | 1, 1, 1, 1, // First (hidden) layer. | 49 | const R weights1[] = {1, -2}; |
| 42 | 1, -2 // Second (output) layer. | 50 | const R biases1[] = {0}; |
| 43 | }; | 51 | // Network. |
| 44 | const R biases[] = { | 52 | const int num_layers = 3; |
| 45 | 0, -1, // First (hidden) layer. | 53 | const int input_size = 2; |
| 46 | 0 // Second (output) layer. | 54 | const nnLayer layers[] = { |
| 55 | {.type = nnLinear, | ||
| 56 | .linear = | ||
| 57 | {.weights = nnMatrixFromArray(2, 2, weights0), | ||
| 58 | .biases = nnMatrixFromArray(1, 2, biases0)}}, | ||
| 59 | {.type = nnRelu}, | ||
| 60 | {.type = nnLinear, | ||
| 61 | .linear = | ||
| 62 | {.weights = nnMatrixFromArray(2, 1, weights1), | ||
| 63 | .biases = nnMatrixFromArray(1, 1, biases1)}}, | ||
| 47 | }; | 64 | }; |
| 48 | 65 | ||
| 49 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | 66 | nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); |
| 50 | assert(net); | 67 | assert(net); |
| 51 | nnSetWeights(net, weights); | ||
| 52 | nnSetBiases(net, biases); | ||
| 53 | 68 | ||
| 54 | // First layer weights. | 69 | // First layer weights. |
| 55 | TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 0), 1); | 70 | TEST_EQUAL(nnMatrixAt(&net->layers[0].linear.weights, 0, 0), 1); |
| 56 | TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 1), 1); | 71 | TEST_EQUAL(nnMatrixAt(&net->layers[0].linear.weights, 0, 1), 1); |
| 57 | TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 2), 1); | 72 | TEST_EQUAL(nnMatrixAt(&net->layers[0].linear.weights, 0, 2), 1); |
| 58 | TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 3), 1); | 73 | TEST_EQUAL(nnMatrixAt(&net->layers[0].linear.weights, 0, 3), 1); |
| 59 | // Second layer weights. | 74 | // Second linear layer (third layer) weights. |
| 60 | TEST_EQUAL(nnMatrixAt(&net->weights[1], 0, 0), 1); | 75 | TEST_EQUAL(nnMatrixAt(&net->layers[2].linear.weights, 0, 0), 1); |
| 61 | TEST_EQUAL(nnMatrixAt(&net->weights[1], 0, 1), -2); | 76 | TEST_EQUAL(nnMatrixAt(&net->layers[2].linear.weights, 0, 1), -2); |
| 62 | // First layer biases. | 77 | // First layer biases. |
| 63 | TEST_EQUAL(nnMatrixAt(&net->biases[0], 0, 0), 0); | 78 | TEST_EQUAL(nnMatrixAt(&net->layers[0].linear.biases, 0, 0), 0); |
| 64 | TEST_EQUAL(nnMatrixAt(&net->biases[0], 0, 1), -1); | 79 | TEST_EQUAL(nnMatrixAt(&net->layers[0].linear.biases, 0, 1), -1); |
| 65 | // Second layer biases. | 80 | // Second linear layer (third layer) biases. |
| 66 | TEST_EQUAL(nnMatrixAt(&net->biases[1], 0, 0), 0); | 81 | TEST_EQUAL(nnMatrixAt(&net->layers[2].linear.biases, 0, 0), 0); |
| 67 | 82 | ||
| 68 | // Test. | 83 | // Test. |
| 69 | 84 | ||
| 70 | #define M 4 | 85 | #define M 4 |
| 71 | 86 | ||
| 72 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/M); | 87 | nnQueryObject* query = nnMakeQueryObject(net, M); |
| 73 | 88 | ||
| 74 | const R test_inputs[M][2] = { { 0., 0. }, { 1., 0. }, { 0., 1. }, { 1., 1. } }; | 89 | const R test_inputs[M][2] = { |
| 90 | {0., 0.}, | ||
| 91 | {1., 0.}, | ||
| 92 | {0., 1.}, | ||
| 93 | {1., 1.} | ||
| 94 | }; | ||
| 75 | nnMatrix test_inputs_matrix = nnMatrixMake(M, 2); | 95 | nnMatrix test_inputs_matrix = nnMatrixMake(M, 2); |
| 76 | nnMatrixInit(&test_inputs_matrix, (const R*)test_inputs); | 96 | nnMatrixInit(&test_inputs_matrix, (const R*)test_inputs); |
| 77 | nnQuery(net, query, &test_inputs_matrix); | 97 | nnQuery(net, query, &test_inputs_matrix); |
| 78 | 98 | ||
| 79 | const R expected_outputs[M] = { 0., 1., 1., 0. }; | 99 | const R expected_outputs[M] = {0., 1., 1., 0.}; |
| 80 | for (int i = 0; i < M; ++i) { | 100 | for (int i = 0; i < M; ++i) { |
| 81 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | 101 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); |
| 82 | printf("\nInput: (%f, %f), Output: %f, Expected: %f\n", | 102 | printf( |
| 83 | test_inputs[i][0], test_inputs[i][1], test_output, expected_outputs[i]); | 103 | "\nInput: (%f, %f), Output: %f, Expected: %f\n", test_inputs[i][0], |
| 104 | test_inputs[i][1], test_output, expected_outputs[i]); | ||
| 84 | } | 105 | } |
| 85 | for (int i = 0; i < M; ++i) { | 106 | for (int i = 0; i < M; ++i) { |
| 86 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | 107 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); |
diff --git a/src/lib/test/train_linear_perceptron_non_origin_test.c b/src/lib/test/train_linear_perceptron_non_origin_test.c index 5a320ac..40a42e0 100644 --- a/src/lib/test/train_linear_perceptron_non_origin_test.c +++ b/src/lib/test/train_linear_perceptron_non_origin_test.c | |||
| @@ -1,9 +1,8 @@ | |||
| 1 | #include <neuralnet/train.h> | 1 | #include <neuralnet/train.h> |
| 2 | 2 | ||
| 3 | #include "neuralnet_impl.h" | ||
| 3 | #include <neuralnet/matrix.h> | 4 | #include <neuralnet/matrix.h> |
| 4 | #include <neuralnet/neuralnet.h> | 5 | #include <neuralnet/neuralnet.h> |
| 5 | #include "activation.h" | ||
| 6 | #include "neuralnet_impl.h" | ||
| 7 | 6 | ||
| 8 | #include "test.h" | 7 | #include "test.h" |
| 9 | #include "test_util.h" | 8 | #include "test_util.h" |
| @@ -11,19 +10,21 @@ | |||
| 11 | #include <assert.h> | 10 | #include <assert.h> |
| 12 | 11 | ||
| 13 | TEST_CASE(neuralnet_train_linear_perceptron_non_origin_test) { | 12 | TEST_CASE(neuralnet_train_linear_perceptron_non_origin_test) { |
| 14 | const int num_layers = 1; | 13 | const int num_layers = 1; |
| 15 | const int layer_sizes[] = { 1, 1 }; | 14 | const int input_size = 1; |
| 16 | const nnActivation layer_activations[] = { nnIdentity }; | 15 | const nnLayer layers[] = { |
| 16 | {.type = nnLinear, .linear = {.input_size = 1, .output_size = 1}} | ||
| 17 | }; | ||
| 17 | 18 | ||
| 18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | 19 | nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); |
| 19 | assert(net); | 20 | assert(net); |
| 20 | 21 | ||
| 21 | // Train. | 22 | // Train. |
| 22 | 23 | ||
| 23 | // Try to learn the Y = 2X + 1 line. | 24 | // Try to learn the Y = 2X + 1 line. |
| 24 | #define N 2 | 25 | #define N 2 |
| 25 | const R inputs[N] = { 0., 1. }; | 26 | const R inputs[N] = {0., 1.}; |
| 26 | const R targets[N] = { 1., 3. }; | 27 | const R targets[N] = {1., 3.}; |
| 27 | 28 | ||
| 28 | nnMatrix inputs_matrix = nnMatrixMake(N, 1); | 29 | nnMatrix inputs_matrix = nnMatrixMake(N, 1); |
| 29 | nnMatrix targets_matrix = nnMatrixMake(N, 1); | 30 | nnMatrix targets_matrix = nnMatrixMake(N, 1); |
| @@ -31,31 +32,32 @@ TEST_CASE(neuralnet_train_linear_perceptron_non_origin_test) { | |||
| 31 | nnMatrixInit(&targets_matrix, targets); | 32 | nnMatrixInit(&targets_matrix, targets); |
| 32 | 33 | ||
| 33 | nnTrainingParams params = { | 34 | nnTrainingParams params = { |
| 34 | .learning_rate = 0.7, | 35 | .learning_rate = 0.7, |
| 35 | .max_iterations = 20, | 36 | .max_iterations = 20, |
| 36 | .seed = 0, | 37 | .seed = 0, |
| 37 | .weight_init = nnWeightInit01, | 38 | .weight_init = nnWeightInit01, |
| 38 | .debug = false, | 39 | .debug = false, |
| 39 | }; | 40 | }; |
| 40 | 41 | ||
| 41 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | 42 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); |
| 42 | 43 | ||
| 43 | const R weight = nnMatrixAt(&net->weights[0], 0, 0); | 44 | const R weight = nnMatrixAt(&net->layers[0].linear.weights, 0, 0); |
| 44 | const R expected_weight = 2.0; | 45 | const R expected_weight = 2.0; |
| 45 | printf("\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | 46 | printf( |
| 47 | "\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | ||
| 46 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); | 48 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); |
| 47 | 49 | ||
| 48 | const R bias = nnMatrixAt(&net->biases[0], 0, 0); | 50 | const R bias = nnMatrixAt(&net->layers[0].linear.biases, 0, 0); |
| 49 | const R expected_bias = 1.0; | 51 | const R expected_bias = 1.0; |
| 50 | printf("Trained network bias: %f, Expected: %f\n", bias, expected_bias); | 52 | printf("Trained network bias: %f, Expected: %f\n", bias, expected_bias); |
| 51 | TEST_TRUE(double_eq(bias, expected_bias, WEIGHT_EPS)); | 53 | TEST_TRUE(double_eq(bias, expected_bias, WEIGHT_EPS)); |
| 52 | 54 | ||
| 53 | // Test. | 55 | // Test. |
| 54 | 56 | ||
| 55 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | 57 | nnQueryObject* query = nnMakeQueryObject(net, 1); |
| 56 | 58 | ||
| 57 | const R test_input[] = { 2.3 }; | 59 | const R test_input[] = {2.3}; |
| 58 | R test_output[1]; | 60 | R test_output[1]; |
| 59 | nnQueryArray(net, query, test_input, test_output); | 61 | nnQueryArray(net, query, test_input, test_output); |
| 60 | 62 | ||
| 61 | const R expected_output = test_input[0] * expected_weight + expected_bias; | 63 | const R expected_output = test_input[0] * expected_weight + expected_bias; |
diff --git a/src/lib/test/train_linear_perceptron_test.c b/src/lib/test/train_linear_perceptron_test.c index 2b1336d..667643b 100644 --- a/src/lib/test/train_linear_perceptron_test.c +++ b/src/lib/test/train_linear_perceptron_test.c | |||
| @@ -1,9 +1,8 @@ | |||
| 1 | #include <neuralnet/train.h> | 1 | #include <neuralnet/train.h> |
| 2 | 2 | ||
| 3 | #include "neuralnet_impl.h" | ||
| 3 | #include <neuralnet/matrix.h> | 4 | #include <neuralnet/matrix.h> |
| 4 | #include <neuralnet/neuralnet.h> | 5 | #include <neuralnet/neuralnet.h> |
| 5 | #include "activation.h" | ||
| 6 | #include "neuralnet_impl.h" | ||
| 7 | 6 | ||
| 8 | #include "test.h" | 7 | #include "test.h" |
| 9 | #include "test_util.h" | 8 | #include "test_util.h" |
| @@ -11,19 +10,21 @@ | |||
| 11 | #include <assert.h> | 10 | #include <assert.h> |
| 12 | 11 | ||
| 13 | TEST_CASE(neuralnet_train_linear_perceptron_test) { | 12 | TEST_CASE(neuralnet_train_linear_perceptron_test) { |
| 14 | const int num_layers = 1; | 13 | const int num_layers = 1; |
| 15 | const int layer_sizes[] = { 1, 1 }; | 14 | const int input_size = 1; |
| 16 | const nnActivation layer_activations[] = { nnIdentity }; | 15 | const nnLayer layers[] = { |
| 16 | {.type = nnLinear, .linear = {.input_size = 1, .output_size = 1}} | ||
| 17 | }; | ||
| 17 | 18 | ||
| 18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | 19 | nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); |
| 19 | assert(net); | 20 | assert(net); |
| 20 | 21 | ||
| 21 | // Train. | 22 | // Train. |
| 22 | 23 | ||
| 23 | // Try to learn the Y=X line. | 24 | // Try to learn the Y=X line. |
| 24 | #define N 2 | 25 | #define N 2 |
| 25 | const R inputs[N] = { 0., 1. }; | 26 | const R inputs[N] = {0., 1.}; |
| 26 | const R targets[N] = { 0., 1. }; | 27 | const R targets[N] = {0., 1.}; |
| 27 | 28 | ||
| 28 | nnMatrix inputs_matrix = nnMatrixMake(N, 1); | 29 | nnMatrix inputs_matrix = nnMatrixMake(N, 1); |
| 29 | nnMatrix targets_matrix = nnMatrixMake(N, 1); | 30 | nnMatrix targets_matrix = nnMatrixMake(N, 1); |
| @@ -31,26 +32,27 @@ TEST_CASE(neuralnet_train_linear_perceptron_test) { | |||
| 31 | nnMatrixInit(&targets_matrix, targets); | 32 | nnMatrixInit(&targets_matrix, targets); |
| 32 | 33 | ||
| 33 | nnTrainingParams params = { | 34 | nnTrainingParams params = { |
| 34 | .learning_rate = 0.7, | 35 | .learning_rate = 0.7, |
| 35 | .max_iterations = 10, | 36 | .max_iterations = 10, |
| 36 | .seed = 0, | 37 | .seed = 0, |
| 37 | .weight_init = nnWeightInit01, | 38 | .weight_init = nnWeightInit01, |
| 38 | .debug = false, | 39 | .debug = false, |
| 39 | }; | 40 | }; |
| 40 | 41 | ||
| 41 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | 42 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); |
| 42 | 43 | ||
| 43 | const R weight = nnMatrixAt(&net->weights[0], 0, 0); | 44 | const R weight = nnMatrixAt(&net->layers[0].linear.weights, 0, 0); |
| 44 | const R expected_weight = 1.0; | 45 | const R expected_weight = 1.0; |
| 45 | printf("\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | 46 | printf( |
| 47 | "\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | ||
| 46 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); | 48 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); |
| 47 | 49 | ||
| 48 | // Test. | 50 | // Test. |
| 49 | 51 | ||
| 50 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | 52 | nnQueryObject* query = nnMakeQueryObject(net, 1); |
| 51 | 53 | ||
| 52 | const R test_input[] = { 2.3 }; | 54 | const R test_input[] = {2.3}; |
| 53 | R test_output[1]; | 55 | R test_output[1]; |
| 54 | nnQueryArray(net, query, test_input, test_output); | 56 | nnQueryArray(net, query, test_input, test_output); |
| 55 | 57 | ||
| 56 | const R expected_output = test_input[0]; | 58 | const R expected_output = test_input[0]; |
diff --git a/src/lib/test/train_sigmoid_test.c b/src/lib/test/train_sigmoid_test.c index 588e7ca..39a84b0 100644 --- a/src/lib/test/train_sigmoid_test.c +++ b/src/lib/test/train_sigmoid_test.c | |||
| @@ -1,9 +1,9 @@ | |||
| 1 | #include <neuralnet/train.h> | 1 | #include <neuralnet/train.h> |
| 2 | 2 | ||
| 3 | #include <neuralnet/matrix.h> | ||
| 4 | #include <neuralnet/neuralnet.h> | ||
| 5 | #include "activation.h" | 3 | #include "activation.h" |
| 6 | #include "neuralnet_impl.h" | 4 | #include "neuralnet_impl.h" |
| 5 | #include <neuralnet/matrix.h> | ||
| 6 | #include <neuralnet/neuralnet.h> | ||
| 7 | 7 | ||
| 8 | #include "test.h" | 8 | #include "test.h" |
| 9 | #include "test_util.h" | 9 | #include "test_util.h" |
| @@ -11,21 +11,24 @@ | |||
| 11 | #include <assert.h> | 11 | #include <assert.h> |
| 12 | 12 | ||
| 13 | TEST_CASE(neuralnet_train_sigmoid_test) { | 13 | TEST_CASE(neuralnet_train_sigmoid_test) { |
| 14 | const int num_layers = 1; | 14 | const int num_layers = 2; |
| 15 | const int layer_sizes[] = { 1, 1 }; | 15 | const int input_size = 1; |
| 16 | const nnActivation layer_activations[] = { nnSigmoid }; | 16 | const nnLayer layers[] = { |
| 17 | {.type = nnLinear, .linear = {.input_size = 1, .output_size = 1}}, | ||
| 18 | {.type = nnSigmoid}, | ||
| 19 | }; | ||
| 17 | 20 | ||
| 18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | 21 | nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); |
| 19 | assert(net); | 22 | assert(net); |
| 20 | 23 | ||
| 21 | // Train. | 24 | // Train. |
| 22 | 25 | ||
| 23 | // Try to learn the sigmoid function. | 26 | // Try to learn the sigmoid function. |
| 24 | #define N 3 | 27 | #define N 3 |
| 25 | R inputs[N]; | 28 | R inputs[N]; |
| 26 | R targets[N]; | 29 | R targets[N]; |
| 27 | for (int i = 0; i < N; ++i) { | 30 | for (int i = 0; i < N; ++i) { |
| 28 | inputs[i] = lerp(-1, +1, (R)i / (R)(N-1)); | 31 | inputs[i] = lerp(-1, +1, (R)i / (R)(N - 1)); |
| 29 | targets[i] = sigmoid(inputs[i]); | 32 | targets[i] = sigmoid(inputs[i]); |
| 30 | } | 33 | } |
| 31 | 34 | ||
| @@ -35,29 +38,30 @@ TEST_CASE(neuralnet_train_sigmoid_test) { | |||
| 35 | nnMatrixInit(&targets_matrix, targets); | 38 | nnMatrixInit(&targets_matrix, targets); |
| 36 | 39 | ||
| 37 | nnTrainingParams params = { | 40 | nnTrainingParams params = { |
| 38 | .learning_rate = 0.9, | 41 | .learning_rate = 0.9, |
| 39 | .max_iterations = 100, | 42 | .max_iterations = 100, |
| 40 | .seed = 0, | 43 | .seed = 0, |
| 41 | .weight_init = nnWeightInit01, | 44 | .weight_init = nnWeightInit01, |
| 42 | .debug = false, | 45 | .debug = false, |
| 43 | }; | 46 | }; |
| 44 | 47 | ||
| 45 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | 48 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); |
| 46 | 49 | ||
| 47 | const R weight = nnMatrixAt(&net->weights[0], 0, 0); | 50 | const R weight = nnMatrixAt(&net->layers[0].linear.weights, 0, 0); |
| 48 | const R expected_weight = 1.0; | 51 | const R expected_weight = 1.0; |
| 49 | printf("\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | 52 | printf( |
| 53 | "\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | ||
| 50 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); | 54 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); |
| 51 | 55 | ||
| 52 | // Test. | 56 | // Test. |
| 53 | 57 | ||
| 54 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | 58 | nnQueryObject* query = nnMakeQueryObject(net, 1); |
| 55 | 59 | ||
| 56 | const R test_input[] = { 0.3 }; | 60 | const R test_input[] = {0.3}; |
| 57 | R test_output[1]; | 61 | R test_output[1]; |
| 58 | nnQueryArray(net, query, test_input, test_output); | 62 | nnQueryArray(net, query, test_input, test_output); |
| 59 | 63 | ||
| 60 | const R expected_output = 0.574442516811659; // sigmoid(0.3) | 64 | const R expected_output = 0.574442516811659; // sigmoid(0.3) |
| 61 | printf("Output: %f, Expected: %f\n", test_output[0], expected_output); | 65 | printf("Output: %f, Expected: %f\n", test_output[0], expected_output); |
| 62 | TEST_TRUE(double_eq(test_output[0], expected_output, OUTPUT_EPS)); | 66 | TEST_TRUE(double_eq(test_output[0], expected_output, OUTPUT_EPS)); |
| 63 | 67 | ||
diff --git a/src/lib/test/train_xor_test.c b/src/lib/test/train_xor_test.c index 6ddc6e0..78695a3 100644 --- a/src/lib/test/train_xor_test.c +++ b/src/lib/test/train_xor_test.c | |||
| @@ -1,9 +1,9 @@ | |||
| 1 | #include <neuralnet/train.h> | 1 | #include <neuralnet/train.h> |
| 2 | 2 | ||
| 3 | #include <neuralnet/matrix.h> | ||
| 4 | #include <neuralnet/neuralnet.h> | ||
| 5 | #include "activation.h" | 3 | #include "activation.h" |
| 6 | #include "neuralnet_impl.h" | 4 | #include "neuralnet_impl.h" |
| 5 | #include <neuralnet/matrix.h> | ||
| 6 | #include <neuralnet/neuralnet.h> | ||
| 7 | 7 | ||
| 8 | #include "test.h" | 8 | #include "test.h" |
| 9 | #include "test_util.h" | 9 | #include "test_util.h" |
| @@ -11,18 +11,27 @@ | |||
| 11 | #include <assert.h> | 11 | #include <assert.h> |
| 12 | 12 | ||
| 13 | TEST_CASE(neuralnet_train_xor_test) { | 13 | TEST_CASE(neuralnet_train_xor_test) { |
| 14 | const int num_layers = 2; | 14 | const int num_layers = 3; |
| 15 | const int layer_sizes[] = { 2, 2, 1 }; | 15 | const int input_size = 2; |
| 16 | const nnActivation layer_activations[] = { nnRelu, nnIdentity }; | 16 | const nnLayer layers[] = { |
| 17 | {.type = nnLinear, .linear = {.input_size = 2, .output_size = 2}}, | ||
| 18 | {.type = nnRelu}, | ||
| 19 | {.type = nnLinear, .linear = {.input_size = 2, .output_size = 1}} | ||
| 20 | }; | ||
| 17 | 21 | ||
| 18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | 22 | nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); |
| 19 | assert(net); | 23 | assert(net); |
| 20 | 24 | ||
| 21 | // Train. | 25 | // Train. |
| 22 | 26 | ||
| 23 | #define N 4 | 27 | #define N 4 |
| 24 | const R inputs[N][2] = { { 0., 0. }, { 0., 1. }, { 1., 0. }, { 1., 1. } }; | 28 | const R inputs[N][2] = { |
| 25 | const R targets[N] = { 0., 1., 1., 0. }; | 29 | {0., 0.}, |
| 30 | {0., 1.}, | ||
| 31 | {1., 0.}, | ||
| 32 | {1., 1.} | ||
| 33 | }; | ||
| 34 | const R targets[N] = {0., 1., 1., 0.}; | ||
| 26 | 35 | ||
| 27 | nnMatrix inputs_matrix = nnMatrixMake(N, 2); | 36 | nnMatrix inputs_matrix = nnMatrixMake(N, 2); |
| 28 | nnMatrix targets_matrix = nnMatrixMake(N, 1); | 37 | nnMatrix targets_matrix = nnMatrixMake(N, 1); |
| @@ -30,31 +39,37 @@ TEST_CASE(neuralnet_train_xor_test) { | |||
| 30 | nnMatrixInit(&targets_matrix, targets); | 39 | nnMatrixInit(&targets_matrix, targets); |
| 31 | 40 | ||
| 32 | nnTrainingParams params = { | 41 | nnTrainingParams params = { |
| 33 | .learning_rate = 0.1, | 42 | .learning_rate = 0.1, |
| 34 | .max_iterations = 500, | 43 | .max_iterations = 500, |
| 35 | .seed = 0, | 44 | .seed = 0, |
| 36 | .weight_init = nnWeightInit01, | 45 | .weight_init = nnWeightInit01, |
| 37 | .debug = false, | 46 | .debug = false, |
| 38 | }; | 47 | }; |
| 39 | 48 | ||
| 40 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | 49 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); |
| 41 | 50 | ||
| 42 | // Test. | 51 | // Test. |
| 43 | 52 | ||
| 44 | #define M 4 | 53 | #define M 4 |
| 45 | 54 | ||
| 46 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/M); | 55 | nnQueryObject* query = nnMakeQueryObject(net, M); |
| 47 | 56 | ||
| 48 | const R test_inputs[M][2] = { { 0., 0. }, { 1., 0. }, { 0., 1. }, { 1., 1. } }; | 57 | const R test_inputs[M][2] = { |
| 58 | {0., 0.}, | ||
| 59 | {1., 0.}, | ||
| 60 | {0., 1.}, | ||
| 61 | {1., 1.} | ||
| 62 | }; | ||
| 49 | nnMatrix test_inputs_matrix = nnMatrixMake(M, 2); | 63 | nnMatrix test_inputs_matrix = nnMatrixMake(M, 2); |
| 50 | nnMatrixInit(&test_inputs_matrix, (const R*)test_inputs); | 64 | nnMatrixInit(&test_inputs_matrix, (const R*)test_inputs); |
| 51 | nnQuery(net, query, &test_inputs_matrix); | 65 | nnQuery(net, query, &test_inputs_matrix); |
| 52 | 66 | ||
| 53 | const R expected_outputs[M] = { 0., 1., 1., 0. }; | 67 | const R expected_outputs[M] = {0., 1., 1., 0.}; |
| 54 | for (int i = 0; i < M; ++i) { | 68 | for (int i = 0; i < M; ++i) { |
| 55 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | 69 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); |
| 56 | printf("\nInput: (%f, %f), Output: %f, Expected: %f\n", | 70 | printf( |
| 57 | test_inputs[i][0], test_inputs[i][1], test_output, expected_outputs[i]); | 71 | "\nInput: (%f, %f), Output: %f, Expected: %f\n", test_inputs[i][0], |
| 72 | test_inputs[i][1], test_output, expected_outputs[i]); | ||
| 58 | } | 73 | } |
| 59 | for (int i = 0; i < M; ++i) { | 74 | for (int i = 0; i < M; ++i) { |
| 60 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | 75 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); |
